Let {X(t), t is an element of R-N} be a fractional Brownian motion in R-d of index H. If L(0,I) is the local time of X at 0 on the interval I subset of R-N, then there exists a positive finite constant c(=c(N,d,H)) such that ...
We study the local times of fractional Brownian motions for all temporal dimensions, N, spatial dimensions d and Hurst parameters H for which local times exist. We establish a Holder continuity result that is a refinement of Xiao (Probab Th Rel Fields 109: ...
Let X = {X(t); t ∈ RN} be a (N,d) fractional Brownian motion in Rd of index H ∈ (0,1). We study the local time of X for all temporal dimensions N and spatial dimensions d for which local time exist. We obtain two main results : R1. If we denote by Lx(I) th ...