Daniel FavratDaniel Favrat a obtenu à l'EPFL son diplôme d'ingénieur mécanicien en 1972 et le titre de docteur ès sciences techniques en 1976.
Il passe ensuite 12 ans dans des centres de recherche industriels au Canada et en Suisse.Depuis 1988, D. Favrat est professeur et directeur du Laboratoire d'énergétique industrielle à l'EPFL. Il est aussi successivement directeur de l'Institut des Sciences de l'énergie et, dès janvier 2007, de l'Institut de Génie Mécanique. Ses recherches portent sur les analyses systémiques prenant en compte l'énergétique, l'environnement et l'économie (optimisation environomique), et les systèmes avancés pour une utilisation plus rationnelle de l'énergie (pompes à chaleur, moteurs, piles à combustible,turbomachines etc.)
Il est membre de l'Académie Suisse des Sciences Techniques et vice-président du comité énergie de la Fédération Mondiale des Organisations d'Ingénieurs. Il est éditeur associé du journal "Energy" et l'auteur de deux livres sur la thermodynamique et l'énergétique publiés aux Presses Polytechniques Universitaires Romandes.
Nicolas GrandjeanNicolas Grandjean received a PhD degree in physics from the University ofNice Sophia Antipolis in 1994 and shortly thereafter joined the French National Center for Scientific Research (CNRS) as a permanent staff member. In 2004, he was appointed tenure-track assistant professor at the École polytechnique fédérale de Lausanne (EPFL) where he created the Laboratory for advanced semiconductors for photonics and electronics. He was promoted to full professor in 2009. He was the director of the Institute of Condensed Matter Physics from 2012 to 2016 and then moved to the University of California at Santa Barbara where he spent 6 months as a visiting professor. Since 2018, he is the head of the School of Physics at the EPFL. He was awarded the Sandoz Family Foundation Grant for Academic Promotion, received the “Nakamura Lecturer” Award in 2010, the "Quantum Devices Award” at the 2017 Compound Semiconductor Week, and “2016 best teacher” award from the EPFL Physics School. His research interests are focused on the physics of nanostructures and III-V nitride semiconductor quantum photonics.
Jürgen BruggerI am a Professor of Microengineering and co-affiliated to Materials Science. Before joining EPFL I was at the MESA Research Institute of Nanotechnology at the University of Twente in the Netherlands, at the IBM Zurich Research Laboratory, and at the Hitachi Central Research Laboratory, in Tokyo, Japan. I received a Master in Physical-Electronics and a PhD degree from Neuchâtel University, Switzerland. Research in my laboratory focuses on various aspects of MEMS and Nanotechnology. My group contributes to the field at the fundamental level as well as in technological development, as demonstrated by the start-ups that spun off from the lab. In our research, key competences are in micro/nanofabrication, additive micro-manufacturing, new materials for MEMS, increasingly for wearable and biomedical applications. Together with my students and colleagues we published over 200 peer-refereed papers and I had the pleasure to supervise over 25 PhD students. Former students and postdocs have been successful in receiving awards and starting their own scientific careers. I am honoured for the appointment in 2016 as Fellow of the IEEE “For contributions to micro and nano manufacturing technology”. In 2017 my lab was awarded an ERC AdvG in the field of advanced micro-manufacturing.
John Richard ThomeJohn R. Thome is Professor of Heat and Mass Transfer at the Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland since 1998, where his primary interests of research are two-phase flow and heat transfer, covering both macro-scale and micro-scale heat transfer and enhanced heat transfer. He directs the Laboratory of Heat and Mass Transfer (LTCM) at the EPFL with a research staff of about 18-20 and is also Director of the Doctoral School in Energy. He received his Ph.D. at Oxford University, England in 1978. He is the author of four books: Enhanced Boiling Heat Transfer (1990), Convective Boiling and Condensation, 3rd Edition (1994), Wolverine Engineering Databook III (2004) and Nucleate Boiling on Micro-Structured Surfaces (2008). He received the ASME Heat Transfer Division's Best Paper Award in 1998 for a 3-part paper on two-phase flow and flow boiling heat transfer published in the Journal of Heat Transfer. He has received the J&E Hall Gold Medal from the U.K. Institute of Refrigeration in February, 2008 for his extensive research contributions on refrigeration heat transfer and more recently the 2010 ASME Heat Transfer Memorial Award. He has published widely on the fundamental aspects of microscale and macroscale two-phase flow and heat transfer and on enhanced boiling and condensation heat transfer.