Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The periodontal ligament (PDL) is a highly vascularized soft connective tissue. Previous studies suggest that the viscous component of the mechanical response may be explained by the deformation-induced collapse and expansion of internal voids (i.e. chiefl ...
The mechanical response of the periodontal ligament (PDL) is complex. This tissue responds as a hyperelastic solid when pulled in tension while demonstrating a viscous behavior under compression. This intricacy is reflected in the tissue's morphology, whic ...
Harmonic tension–compression tests at 0.1, 0.5 and 1 Hz on hydrated bovine periodontal ligament (PDL) were numerically simulated. The process was modeled by finite elements (FE) within the framework of poromechanics, with the objective of isolating the con ...
The periodontal ligament (PDL) functions both in tension and in compression. The presence of an extensive vascular network inside the tissue suggests a significant contribution of the fluid phase to the mechanical response. This study examined the load res ...
This study was conducted as part of research line addressing the mechanical response of periodontal ligament (PDL) to tensile-compressive sinusoidal loading The aim of the present project was to determine the effect of three potential sources of variabilit ...
Mechanical testing of the periodontal ligament requires a practical experimental model. Bovine teeth are advantageous in terms of size and availability, but information is lacking as to the anatomy and histology of their periodontium. The aim of this study ...
Orthodontic treatments are all based on the experimental evidence that teeth can be forced to move in the dental arch by means of applied mechanical forces. Since it allows for prediction of dental mobility, the mechanical characterization of the tissues i ...