**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Personne# Xiao-Yu Hu

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Unités associées

Chargement

Cours enseignés par cette personne

Chargement

Domaines de recherche associés

Chargement

Publications associées

Chargement

Personnes menant des recherches similaires

Chargement

Unités associées

Aucun résultat

Domaines de recherche associés

Aucun résultat

Publications associées (2)

Personnes menant des recherches similaires

Aucun résultat

Chargement

Chargement

Cours enseignés par cette personne

Aucun résultat

Christina Fragouli, Robert Haas, Xiao-Yu Hu, Vinodh Venkatesan

Replication is a widely used method to protect large- scale data storage systems from data loss when storage nodes fail. It is well known that the placement of replicas of the different data blocks across the nodes affects the time to rebuild. Several systems described in the literature are designed based on the premise that minimizing the rebuild times maximizes the system reliability. Our results however indicate that the reliability is essentially unaffected by the replica placement scheme. We show that, for a replication factor of two, all possible placement schemes have mean times to data loss (MTTDLs) within a factor of two for practical values of the failure rate, storage capacity, and rebuild bandwidth of a storage node. The theoretical results are confirmed by means of event-driven simulation. For higher replication factors, an analytical derivation of MTTDL becomes intractable for a general placement scheme. We therefore use one of the alternate measures of reliability that have been proposed in the literature, namely, the probability of data loss during rebuild in the critical mode of the system. Whereas for a replication factor of two this measure can be directly translated into MTTDL, it is only speculative of the MTTDL behavior for higher replication factors. This measure of reliability is shown to lie within a factor of two for all possible placement schemes and any replication factor. We also show that for any replication factor, the clustered placement scheme has the lowest probability of data loss during rebuild in critical mode among all possible placement schemes, whereas the declustered placement scheme has the highest probability. Simulation results reveal however that these properties do not hold for the corresponding MTTDLs for a replication factor greater than two. This indicates that some alternate measures of reliability may not be appropriate for comparing the MTTDL of different placement schemes.

2010This dissertation presents a systematic exposition on finite-block-length coding theory and practice. We begin with the task of identifying the maximum achievable rates over noisy, finite-block-length constrained channels, referred to as (ε, n)-capacity Cεn, with ε denoting target block-error probability and n the block length. We characterize how the optimum codes look like over finite-block-length constrained channels. Constructing good, short-block-length error-correcting codes defined on sparse graphs is the focus of the thesis. We propose a new, general method for constructing Tanner graphs having a large girth by progressively establishing edges or connections between symbol and check nodes in an edge-by-edge manner, called progressive edge-growth (PEG) construction. Lower bounds on the girth of PEG Tanner graphs and on the minimum distance of the resulting low-density parity-check (LDPC) codes are derived in terms of parameters of the graphs. The PEG construction attains essentially the same girth as Gallager's explicit construction for regular graphs, both of which meet or exceed an extension of the Erdös-Sachs bound. The PEG construction proves to be powerful for generating good, short-block-length binary LDPC codes. Furthermore, we show that the binary interpretation of GF(2b) codes on the cycle Tanner graph TG(2, dc), if b grows sufficiently large, can be used over the binary-input additive white Gaussian noise (AWGN) channel as "good code for optimum decoding" and "good code for iterative decoding". Codes on sparse graphs are often decoded iteratively by a sum-product algorithm (SPA) with low complexity. We investigate efficient digital implementations of the SPA for decoding binary LDPC codes from both the architectural and algorithmic point of view, and describe new reduced-complexity derivatives thereof. The unified treatment of decoding techniques for LDPC codes provides flexibility in selecting the appropriate design point in high-speed applications from a performance, latency, and computational complexity perspective.