Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this Note we prove that in two and three space dimensions, the symmetric and non-symmetric discontinuous Galerkin method for second order elliptic problems is stable when using piecewise linear elements enriched with quadratic bubbles without any penali ...
We consider DG-methods for 2nd order scalar elliptic problems using piecewise affine approximation in two or three space dimensions. We prove that both the symmetric and the non-symmetric version of the DG-method have regular system matrices also without pen ...
In this paper we give an analysis of a bubble stabilized discontinuous Galerkin method (BSDG) for elliptic and parabolic problems. The method consists of stabilizing the numerical scheme by enriching the discontinuous finite element space elementwise by qua ...
We propose two new and enhanced algorithms for greedy sampling of high- dimensional functions. While the techniques have a substantial degree of generality, we frame the discussion in the context of methods for empirical interpolation and the devel- opment ...
We extend the results on minimal stabilization of Burman and Stamm[J. Sci. Comp., 33 (2007), pp. 183-208] to the case of the local discontinuous Galerkin methods on mixed form. The penalization term on the faces is relaxed to act only on a part of the poly ...
This book provides a thorough introduction to the mathematical and algorithmic aspects of certified reduced basis methods for parametrized partial differential equations. Central aspects ranging from model construction, error estimation and computational e ...
The subject of this thesis is the analysis of discontinuous Galerkin methods for linear partial differential equations of first or second order. Discontinuous Galerkin methods are known to satisfy a local mass conservation property. Taking a closer look on ...
The aim of this paper is to overcome the well-known lack of p-optimality in hp-version discontinuous Galerkin (DG) discretizations for the numerical approximation of linear elliptic problems. For this purpose, we shall present and analyze a class of hp-DG ...
In this paper we present the continuous and discontinuous Galerkin methods in a unified setting for the numerical approximation of the transport dominated advection-reaction equation. Both methods are stabilized by the interior penalty method, more precise ...
Standard high order Galerkin methods, such as pure spectral or high order finite element methods, have insufficient stability properties when applied to transport dominated problems. In this paper we review some stabilization strategies for pure spectral m ...