**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Personne# Martin Bauer

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Unités associées

Chargement

Cours enseignés par cette personne

Chargement

Domaines de recherche associés

Chargement

Publications associées

Chargement

Personnes menant des recherches similaires

Chargement

Unités associées

Cours enseignés par cette personne

Aucun résultat

Aucun résultat

Domaines de recherche associés

Publications associées (8)

Personnes menant des recherches similaires

Aucun résultat

Aucun résultat

Chargement

Chargement

Chargement

Martin Bauer, Martins Bruveris

Metrics on shape spaces are used to describe deformations that take one shape to another, and to define a distance between shapes. We study a family of metrics on the space of curves, which includes several recently proposed metrics, for which the metrics are characterised by mappings into vector spaces where geodesics can be easily computed. This family consists of Sobolev-type Riemannian metrics of order one on the space Imm(S-1, R-2) of parameterized plane curves and the quotient space Imm(S-1,R-2)/Diff (S-1) of unparameterized curves. For the space of open parameterized curves we find an explicit formula for the geodesic distance and show that the sectional curvatures vanish on the space of parameterized open curves and are non-negative on the space of unparameterized open curves. For one particular metric we provide a numerical algorithm that computes geodesics between unparameterized, closed curves, making use of a constrained formulation that is implemented numerically using the RATTLE algorithm. We illustrate the algorithm with some numerical tests between shapes. (C) 2014 Elsevier B.V. All rights reserved.

Martin Bauer, Enrico Bertuzzo, Alexey Boyarsky, Francesco Cerutti, Emanuele Copello, Patrick Foldenauer, Ji Hyun Kim, Karan Kumar, Jing Li, Yiming Li, Wei Liu, Zhen Liu, Saurabh Nangia, Lesya Shchutska, Zheng Wang, Wenjing Wu, Yi Zhang

High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe Standard Model (SM) processes and search for physics beyond the Standard Model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential. 429 pages, contribution to Snowmass 2021.

2022Martin Bauer, Alexey Boyarsky, Marco Drewes, Oleg Ruchayskiy, Lesya Shchutska

With the establishment and maturation of the experimental programs searching for new physics with sizeable couplings at the LHC, there is an increasing interest in the broader particle and astrophysics community for exploring the physics of light and feebly-interacting particles as a paradigm complementary to a New Physics sector at the TeV scale and beyond. FIPs 2020 has been the first workshop fully dedicated to the physics of feebly-interacting particles and was held virtually from 31 August to 4 September 2020. The workshop has gathered together experts from collider, beam dump, fixed target experiments, as well as from astrophysics, axions/ALPs searches, current/future neutrino experiments, and dark matter direct detection communities to discuss progress in experimental searches and underlying theory models for FIPs physics, and to enhance the cross-fertilisation across different fields. FIPs 2020 has been complemented by the topical workshop "Physics Beyond Colliders meets theory", held at CERN from 7 June to 9 June 2020. This document presents the summary of the talks presented at the workshops and the outcome of the subsequent discussions held immediately after. It aims to provide a clear picture of this blooming field and proposes a few recommendations for the next round of experimental results.

2021