,
We present a new and computationally efficient scheme for classifying signals into a fixed number of known classes. We model classes as subspaces in which the corresponding data is well represented by a dictionary of features. In order to ensure low misclassification, the subspaces should be incoherent so that features of a given class cannot represent efficiently signals from another. We propose a simple iterative strategy to learn dictionaries which are are the same time good for approximating within a class and also discriminant. Preliminary tests on a standard face images database show competitive results.
Ieee Service Center, 445 Hoes Lane, Po Box 1331, Piscataway, Nj 08855-1331 Usa2010