Little is known about the real energy potential of thermoactive underground infrastructures, such as railway stations, that can act as a heating/cooling provider for the built environment. This study presents the results of thermomechanical full-scale in s ...
A discrete element model is proposed to examine rock strength and failure. The model is implemented by UDEC which is developed for this purpose. The material is represented as a collection of irregular-sized deformable particles interacting at their cohesi ...
The study presented in this thesis aims to numerically explore the micro-mechanisms underlying rock fracture and fragmentation under dynamic loading. The approach adopted is based on the Discrete Element Method (DEM) coupled to the Cohesive Process Zone (C ...
Bonded particle modelling (BPM) is nowadays being extensively used for simulating brittle material failure. In BPM, material is modelled as a dense assemblage of particles (grains) connected together by contacts (cement). This sort of modelling seriously d ...
A discrete element model is proposed to examine rock strength and failure. The model is implemented by UDEC, which is developed for this purpose. The material is represented as a collection of irregular-sized deformable particles interacting at their cohes ...
A full rate-dependent cohesive law is implemented in the distinct lattice spring method (DLSM) to investigate the dynamic fracturing behavior of brittle materials. Both the spring ultimate deformation and spring strength are dependent on the spring deforma ...