We present an "a posteriori" error analysis in quantities of interest for elliptic homogenization problems discretized by the finite element heterogeneous multiscale method. The multiscale method is based on a macro-to-micro formulation, where the macrosco ...
In this paper we present an a posteriori error analysis for elliptic homogenization problems discretized by the finite element heterogeneous multiscale method. Unlike standard finite element methods, our discretization scheme relies on macro- and microfini ...
Engineers rely on efficient simulations that provide them with reliable data in order to make proper engineering design decisions. The purpose of this thesis is to design adaptive numerical methods for multiscale problems in this spirit. We consider ellipt ...
We describe a multiscale finite element (FE) solver for elliptic or parabolic problems with highly oscillating coefficients. Based on recent developments of the so-called heterogeneous multiscale method (HMM), the algorithm relies on coupled macro- and mic ...