Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this report we extend the ideas behind classical multiscale signal processing techniques in order to analyze data residing on graphs. In particular, we extend the notions of filtering, downsampling, and upsampling to functions defined on graphs. We then ...
We consider the transductive learning problem when the labels belong to a continuous space. Through the use of spectral graph wavelets, we explore the benefits of multiresolution analysis on a graph constructed from the labeled and unlabeled data. The spec ...
In this letter, we introduce a novel method for constructing large size generalized Welch bound equality (GWBE) matrices. This method can also be used for the construction of large WBE matrices. The advantage of this method is its low complexity for constr ...
Institute of Electrical and Electronics Engineers2010
Everybody knows what it feels to be surprised. Surprise raises our attention and is crucial for learning. It is a ubiquitous concept whose traces have been found in both neuroscience and machine learning. However, a comprehensive theory has not yet been de ...
Multiscale transforms designed to process analog and discrete-time signals and images cannot be directly applied to analyze high-dimensional data residing on the vertices of a weighted graph, as they do not capture the intrinsic topology of the graph data ...
Institute of Electrical and Electronics Engineers2016
Surprise is a widely used concept describing a range of phenomena from unexpected events to behavioral responses. We propose a measure of surprise, to arrive at a new framework for surprise-driven learning. There are two components to this framework: (i) a ...