**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Personne# Ondine Gabrielle Chanon

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Unités associées

Chargement

Cours enseignés par cette personne

Chargement

Domaines de recherche associés

Chargement

Publications associées

Chargement

Personnes menant des recherches similaires

Chargement

Domaines de recherche associés (2)

Cours enseignés par cette personne

Géométrie

La géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenan

Analysis

Analysis (: analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathema

Aucun résultat

Publications associées (7)

Chargement

Chargement

Chargement

Personnes menant des recherches similaires (128)

Unités associées (6)

Annalisa Buffa, Ondine Gabrielle Chanon, Rafael Vazquez Hernandez

Removing geometrical details from a complex domain is a classical operation in computer aided design for simulation and manufacturing. This procedure simplifies the meshing process, and it enables faster simulations with less memory requirements. But depending on the partial differential equation that one wants to solve, removing some important geometrical features may greatly impact the solution accuracy. For instance, in solid mechanics simulations, such features can be holes or fillets near stress concentration regions. Unfortunately, the effect of geometrical simplification on the accuracy of the problem solution is often neglected, or its evaluation is based on engineering expertise only due to the lack of reliable tools. It is therefore important to have a better understanding of the effect of geometrical model simplification, also called defeaturing, to improve our control on the simulation accuracy along the design and analysis phase. In this work, we consider the Poisson equation as a model problem, we focus on isogeometric discretizations, and we build an adaptive strategy that is twofold. Firstly, it performs standard mesh refinement in a (potentially trimmed multipatch) defeatured geometry described via truncated hierarchical B-splines. Secondly, it is also able to perform geometrical refinement, that is, to choose at each iteration step which geometrical feature is important to obtain an accurate solution. To drive this adaptive strategy, we introduce an a posteriori estimator of the energy error between the exact solution defined in the exact fully-featured geometry, and the numerical approximation of the solution defined in the defeatured geometry. The reliability of the estimator is proven for very general geometric configurations, and numerical experiments are performed to validate the presented theory and to illustrate the capabilities of the proposed adaptive strategy.

2022Removing geometrical details from a complex domain is a classical operation in computer aided design for simulation and manufacturing. This procedure simplifies the meshing process, and it enables faster simulations with less memory requirements. However, depending on the partial differential equation that one wants to solve in the geometrical model of interest, removing some important geometrical features may greatly impact the solution accuracy. For instance, in solid mechanics simulations, such features can be holes or fillets near stress concentration regions. Unfortunately, the effect of geometrical simplification on the accuracy of the problem solution is often neglected, because its analysis is a time-consuming task that is often performed manually, based on the expertise of engineers. It is therefore important to have a better understanding of the effect of geometrical model simplification, also called defeaturing, to improve our control on the simulation accuracy along the design and analysis phase.In this thesis, we formalize the process of defeaturing, and we analyze its impact on the accuracy of solutions of some partial differential problems. To achieve this goal, we first precisely define the error between the problem solution defined in the exact geometry, and the one defined in the simplified geometry. Then, we introduce an a posteriori estimator of the energy norm of this error. This allows us to reliably and efficiently control the error coming from the addition or the removal of geometrical features. We subsequently consider a finite element approximation of the defeatured problem, and the induced numerical error is integrated to the proposed defeaturing error estimator. In particular, we address the special case of isogeometric analysis based on (truncated) hierarchical B-splines, in possibly trimmed and multipatch geometries. In this framework, we derive a reliable a posteriori estimator of the overall error, i.e., of the error between the exact solution defined in the exact geometry, and the numerical solution defined in the defeatured geometry.We then propose a two-fold adaptive strategy for analysis-aware defeaturing, which starts by considering a coarse mesh on a fully-defeatured computational domain. On the one hand, the algorithm performs classical finite element mesh refinements in a (partially) defeatured geometry. On the other hand, the strategy also allows for geometrical refinement. That is, at each iteration, the algorithm is able to choose which missing geometrical features should be added to the simplified geometrical model, in order to obtain a more accurate solution.Throughout the thesis, we validate the presented theory, the properties of the aforementioned estimators and the proposed adaptive strategies, thanks to an extensive set of numerical experiments.

Annalisa Buffa, Ondine Gabrielle Chanon, Rafael Vazquez Hernandez

Trimming consists of cutting away parts of a geometric domain, without reconstructing a global parametrization (meshing). It is a widely used operation in computer-aided design, which generates meshes that are unfitted with the described physical object. This paper develops an adaptive mesh refinement strategy on trimmed geometries in the context of hierarchical B-spline-based isogeometric analysis. A residual a posteriori estimator of the energy norm of the numerical approximation error is derived, in the context of the Poisson equation. The estimator is proven to be reliable, independently of the number of hierarchical levels and of the way the trimmed boundaries cut the underlying mesh. Numerical experiments are performed to validate the presented theory, and to show that the estimator's effectivity index is independent of the size of the active part of the trimmed mesh elements.

2022