In this paper we propose a dynamical low-rank strategy for the approximation of second order wave equations with random parameters. The governing equation is rewritten in Hamiltonian form and the approximate solution is expanded over a set of 2S dynamical ...
In this paper we propose a method for the strong imposition of random Dirichlet boundary conditions in the Dynamical Low Rank (DLR) approximation of parabolic PDEs and, in particular, incompressible Navier Stokes equations. We show that the DLR variational ...
In this work, we focus on the Dynamical Low Rank (DLR) approximation of PDEs equations with random parameters. This can be interpreted as a reduced basis method, where the approximate solution is expanded in separable form over a set of few deterministic b ...
In this work we discuss the dynamically orthogonal (DO) approximation of time dependent partial differential equations with random data. The approximate solution is expanded at each time instant on a time dependent orthonormal basis in the physical domain ...