Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Let F-p be a prime field of order p > 2, and let A be a set in F-p with very small size in terms of p. In this note, we show that the number of distinct cubic distances determined by points in A x A satisfies vertical bar(A - A)(3) + (A - A)(3 vertical bar ...
We show that for m points and n lines in R-2, the number of distinct distances between the points and the lines is Omega(m(1/5)n(3/5)), as long as m(1/2)
Suppose that nk points in general position in the plane are colored red and blue, with at least n points of each color. We show that then there exist n pairwise disjoint convex sets, each of them containing k of the points, and each of them containing poin ...
Let B-M : C x C -> C be a bilinear form B-M(p, q) - p(T)Mq, with an invertible matrix M is an element of C-2x2. We prove that any finite set S contained in an irreducible algebraic curve C of degree d in C determines Omega(d)(vertical bar S vertical bar(4/ ...
The present thesis deals with problems arising from discrete mathematics, whose proofs make use of tools from algebraic geometry and topology. The thesis is based on four papers that I have co-authored, three of which have been published in journals, and o ...
EPFL2017
,
We prove a lower bound on the number of ordinary conics determined by a finite point set in R-2. An ordinary conic for S subset of R-2 is a conic that is determined by five points of S and contains no other points of S. Wiseman and Wilson proved the Sylves ...