Let G = (V, E) be an (n, d, lambda)-graph. In this paper, we give an asymptotically tight condition on the size of U subset of V such that the number of paths of length k in U is close to the expected number for arbitrary integer k >= 1. More precisely, we ...
In this note, we use methods from spectral graph theory to obtain bounds on the number of incidences between k-planes and h-planes in F-q(d), which generalizes a recent result given by Bennett, Iosevich, and Pakianathan (2014). More precisely, we prove tha ...
Let F-q be a finite field of q elements, where q is a large odd prime power and Q = a(1)x(1)(c1) + ..... + a(d)x(d)(cd) is an element of F-q[x(1) ,...,x(d)], where 2
Let F-p be a prime field of order p > 2, and let A be a set in F-p with very small size in terms of p. In this note, we show that the number of distinct cubic distances determined by points in A x A satisfies vertical bar(A - A)(3) + (A - A)(3 vertical bar ...
Let epsilon be a set of points in F-q(d). Bennett et al. (2016) proved that if \epsilon\ >> [GRAHICS] then epsilon determines a positive proportion of all k-simplices. In this paper, we give an improvement of this result in the case when epsilon is the Car ...
In this paper we study some generalized versions of a recent result due to Covert, Koh, and Pi (2015). More precisely, we prove that if a subset in a regular variety satisfies vertical bar epsilon vertical bar >> q(d-1/2 + 1/k-1), then Delta(k,F)(epsilon) ...
We prove a Szemeredi-Trotter type theorem and a sum product estimate in the setting of finite quasifields. These estimates generalize results of the fourth author, of Garaev, and of Vu. We generalize results of Gyarmati and Sarkozy on the solvability of th ...
In this thesis we study a number of problems in Discrete Combinatorial Geometry in finite spaces. The contents in this thesis are structured as follows: In Chapter 1 we will state the main results and the notations which will be used throughout the thesis. ...
In this paper, we use methods from spectral graph theory to obtain some results on the sum-product problem over finite valuation rings R of order q(r) which generalize recent results given by Hegyvari and Hennecart (2013). More precisely, we prove that, fo ...