Personne

Róger Bermúdez Chacón

Cette personne n’est plus à l’EPFL

Publications associées (5)

Learning and leveraging shared domain semantics to counteract visual domain shifts

Róger Bermúdez Chacón

One of the main limitations of artificial intelligence today is its inability to adapt to unforeseen circumstances. Machine Learning (ML), due to its data-driven nature, is particularly susceptible to this. ML relies on observations in order to learn impli ...
EPFL2020

Domain-Adaptive Multibranch Networks

Pascal Fua, Mathieu Salzmann, Róger Bermúdez Chacón

We tackle unsupervised domain adaptation by accounting for the fact that different domains may need to be processed differently to arrive to a common feature representation effective for recognition. To this end, we introduce a deep learning framework wher ...
2020

Visual Correspondences for Unsupervised Domain Adaptation on Electron Microscopy Images

Pascal Fua, Mathieu Salzmann, Carlos Joaquin Becker, Róger Bermúdez Chacón, Okan Altingövde

We present an Unsupervised Domain Adaptation strategy to compensate for domain shifts on Electron Microscopy volumes. Our method aggregates visual correspondences—motifs that are visually similar across different acquisitions—to infer changes on the parame ...
2019

A Domain-Adaptive Two-Stream U-Net for Electron Microscopy Image Segmentation

Pascal Fua, Mathieu Salzmann, Pablo Marquez Neila, Róger Bermúdez Chacón

Deep networks such as the U-Net are outstanding at segmenting biomedical images when enough training data is available, but only then. Here we introduce a Domain Adaptation approach that relies on two coupled U-Nets that either regularize or share correspo ...
2018

Scalable Unsupervised Domain Adaptation for Electron Microscopy

Pascal Fua, Mathieu Salzmann, Carlos Joaquin Becker, Róger Bermúdez Chacón

While Machine Learning algorithms are key to automating organelle segmentation in large EM stacks, they require annotated data, which is hard to come by in sufficient quantities. Furthermore, images acquired from one part of the brain are not always repres ...
2016

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.