**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Personne# Alexander Aures

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Unités associées

Chargement

Cours enseignés par cette personne

Chargement

Domaines de recherche associés

Chargement

Publications associées

Chargement

Personnes menant des recherches similaires

Chargement

Personnes menant des recherches similaires

Aucun résultat

Unités associées

Aucun résultat

Publications associées (3)

Chargement

Chargement

Chargement

Cours enseignés par cette personne

Aucun résultat

Domaines de recherche associés

Aucun résultat

Understanding the time-dependent behaviour of a nuclear reactor following an intended or unintended change of the reactor conditions is of crucial importance to the safe operation of nuclear reactors. Safety evaluations of nuclear reactors involve the analysis of normal and abnormal reactor operation states with adequate and validated simulation tools.
There is a growing interest in supplementing the results of best-estimate reactor calculations with uncertainties. A major source of uncertainty in reactor calculations is the nuclear data. The propagation of uncertainties allows to study their impact on response values of reactor calculations and to establish safety margins in nuclear reactor safety evaluations.
For the simulation of reactor transients, the two-step approach consisting of the generation of group constants in infinite lattice geometry and the full-core calculation using a neutron-kinetic/thermal-hydraulic code system has been state-of-the-art.
Nowadays, Monte Carlo codes allow for the determination of group constants based on a three-dimensional full-core model. Thus, effects from neighbouring fuel assemblies can be considered.
In this thesis, the applicability of the neutron-kinetic code DYN3D coupled with the thermal-hydraulic system code ATHLET for the simulation of transients in small reactor cores was assessed. Experimental reactivity accident tests carried out at the SPERT III research reactor were simulated. Appropriate group constants were generated with the Monte Carlo code Serpent. The overall good agreement between the calculated and the experimental results prove the applicability of the applied codes for the analysis of such reactor transients.
Nuclear data uncertainties were propagated through the simulations of two control rod withdrawal transients in a mini-core model of a pressurised water reactor. The random sampling-based method XSUSA in combination with the SCALE code package was used to determine varied two-group constants.
Based on these two-group constants, 1,000 DYN3D-ATHLET calculations were performed and statistically analysed to obtain uncertainty information for the reactor power and the reactivity.
Since the assumption of normality could not be maintained for the reactor power, distribution-free Wilks tolerance limits were applied.
By sensitivity analyses, the number of delayed neutrons per fission of U-235 and the scattering cross sections of U-238 were identified as the major contributors to the reactor power uncertainty.
For a potential improvement of transient simulations, an approach was developed that was comprised of the determination of group constants using a Serpent full-core model at selected times during a transient simulation and the updating of the original infinite lattice group constants with these full-core group constants. Various challenges and possible solutions were identified. The applicability of the group constants obtained by a full-core model was assessed by their application in full-core diffusion calculations.

Alexander Aures, Friederike Bostelmann, Andreas Pautz, Winfried Zwermann

The paper demonstrates the influence of uncertainties in microscopic nuclear data on the results of reactor simulations, both for stationary and transient states. It gives an overview on the methods in use for uncertainty and sensitivity analyses with respect to nuclear data, and discusses the pros and cons. For full-scale reactor simulations, in particular with coupled neutron transport and thermo-hydraulics, random sampling provides a powerful means to propagate nuclear data uncertainties through the complete calculation sequence. Results of uncertainty analyses performed with the GRS XSUSA - "cross section (XS) Uncertainty and Sensitivity Analysis" methodology are shown for radial power distributions from steady-state PWR calculations and for the time evolution of the reactor power in the course of a control rod withdrawal from a PWR mini-core. In all cases, the output uncertainties are considerable. For the radial power distributions, relative la uncertainties of up to 10% are observed, and for the power peak during the transient, the relative to uncertainty reaches 20%. These large uncertainties strongly suggest to routinely accompany best-estimate simulations by uncertainty analyses with respect to nuclear data, in particular for systems beyond LWR for which much less operation experience is available.

Alexander Aures, Andreas Pautz, Winfried Zwermann

The impact of nuclear data uncertainties is studied for the reactor power and the reactivity during control rod withdrawal transients with reactivity insertions of 0.5$and 0.97$, respectively, for a PWR mini-core model. Multi-group cross sections, the multiplicities of both prompt and delayed neutrons, and fission spectra are varied by the application of the random sampling-based method XSUSA with covariance data of SCALE 6.1 supplemented by JENDL-4.0. The varied multi-group data are used by TRITON/NEWT to generate varied 2-group cross sections, which are then applied in neutron-kinetic/thermal-hydraulic calculations with DYN3D-ATHLET. A significant impact on both the reactivity uncertainty and the power uncertainty is observed. Since the distributional properties of the output time series vary across the problem time, the distribution-free Wilks tolerance limit is applied as a robust uncertainty measure to complex time series patterns. The most contributing nuclide reactions to the power uncertainty are identified via sensitivity analysis. (C) 2019 Elsevier Ltd. All rights reserved.