Personne

Jean François Emmanuel Barbier

Cette personne n’est plus à l’EPFL

Publications associées (18)

Mutual Information for the Stochastic Block Model by the Adaptive Interpolation Method

Nicolas Macris, Jean François Emmanuel Barbier, Chun Lam Chan

We rigorously derive a single-letter variational expression for the mutual information of the asymmetric two-groups stochastic block model in the dense graph regime. Existing proofs in the literature are indirect, as they involve mapping the model to a ran ...
IEEE2019

The committee machine: computational to statistical gaps in learning a two-layers neural network

Nicolas Macris, Florent Gérard Krzakala, Lenka Zdeborová, Jean François Emmanuel Barbier

Heuristic tools from statistical physics have been used in the past to locate the phase transitions and compute the optimal learning and generalization errors in the teacher-student scenario in multi-layer neural networks. In this paper, we provide a rigor ...
IOP PUBLISHING LTD2019

The adaptive interpolation method for proving replica formulas. Applications to the Curie-Weiss and Wigner spike models

Nicolas Macris, Jean François Emmanuel Barbier

In this contribution we give a pedagogic introduction to the newly introduced adaptive interpolation method to prove in a simple and unified way replica formulas for Bayesian optimal inference problems. Many aspects of this method can already be explained ...
IOP PUBLISHING LTD2019

Adaptive Path Interpolation for Sparse Systems: Application to a Simple Censored Block Model

Nicolas Macris, Jean François Emmanuel Barbier, Chun Lam Chan

A new adaptive path interpolation method has been recently developed as a simple and versatile scheme to calculate exactly the asymptotic mutual information of Bayesian inference problems defined on dense factor graphs. These include random linear and gene ...
IEEE2018

The committee machine: Computational to statistical gaps in learning a two-layers neural network

Nicolas Macris, Florent Gérard Krzakala, Lenka Zdeborová, Jean François Emmanuel Barbier

Heuristic tools from statistical physics have been used in the past to locate the phase transitions and compute the optimal learning and generalization errors in the teacher-student scenario in multi-layer neural networks. In this contribution, we provide ...
NEURAL INFORMATION PROCESSING SYSTEMS (NIPS)2018

Entropy and mutual information in models of deep neural networks

Nicolas Macris, Florent Gérard Krzakala, Lenka Zdeborová, Jean François Emmanuel Barbier, Clément Dominique Luneau

We examine a class of stochastic deep learning models with a tractable method to compute information-theoretic quantities. Our contributions are three-fold: (i) We show how entropies and mutual informations can be derived from heuristic statistical physics ...
NEURAL INFORMATION PROCESSING SYSTEMS (NIPS)2018

The Mutual Information in Random Linear Estimation Beyond i.i.d. Matrices

Nicolas Macris, Florent Gérard Krzakala, Jean François Emmanuel Barbier

There has been definite progress recently in proving the variational single-letter formula given by the heuristic replica method for various estimation problems. In particular, the replica formula for the mutual information in the case of noisy linear esti ...
IEEE2018

Scampi: a robust approximate message-passing framework for compressive imaging

Florent Gérard Krzakala, Jean François Emmanuel Barbier

Reconstruction of images from noisy linear measurements is a core problem in image processing, for which convex optimization methods based on total variation (TV) minimization have been the long-standing state-of-the-art. We present an alternative probabil ...
Iop Publishing Ltd2016

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.