**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Personne# Michael Thompson McCann

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Unités associées

Chargement

Cours enseignés par cette personne

Chargement

Domaines de recherche associés

Chargement

Publications associées

Chargement

Personnes menant des recherches similaires

Chargement

Cours enseignés par cette personne

Aucun résultat

Domaines de recherche associés (8)

Iterative reconstruction

Iterative reconstruction refers to iterative algorithms used to reconstruct 2D and 3D images in certain imaging techniques.
For example, in computed tomography an image must be reconstructed from pro

Problème inverse

vignette|une somme de plusieurs nombres donne le nombre 27, mais peut-on les deviner à partir de 27 ?
En science, un problème inverse est une situation dans laquelle on tente de déterminer les causes

Tomographic reconstruction

Tomographic reconstruction is a type of multidimensional inverse problem where the challenge is to yield an estimate of a specific system from a finite number of projections. The mathematical basis f

Unités associées (2)

Personnes menant des recherches similaires (93)

Publications associées (11)

Chargement

Chargement

Chargement

Laurène Donati, Harshit Gupta, Michael Thompson McCann, Michaël Unser

We present CryoGAN, a new paradigm for single-particle cryo-electron microscopy (cryo-EM) reconstruction based on unsupervised deep adversarial learning. In single-particle cryo-EM, the structure of a biomolecule needs to be reconstructed from a large set of noisy tomographic projections with unknown orientations. Current reconstruction techniques are based on a marginalized maximum-likelihood formulation that requires calculations over the set of all possible poses for each projection image, a computationally demanding procedure. Our approach is to seek a 3D structure that has simulated projections that match the real data in a distributional sense, thereby sidestepping pose estimation or marginalization. We prove that, in an idealized mathematical model of cryo-EM, this approach results in recovery of the correct structure. Motivated by distribution matching, we propose CryoGAN, a specialized GAN that consists of a 3D structure, a cryo-EM physics simulator, and a discriminator neural network. During reconstruction, the 3D structure is optimized so that its projections obtained through the simulator resemble real data (to the discriminator). Simultaneously, the discriminator is trained to distinguish real projections from simulated projections. CryoGAN takes as input only real projection images and the distribution of the cryo-EM imaging parameters. It involves neither prior training nor an initial estimation of the 3D structure. CryoGAN currently achieves a 10.8 angstrom resolution on a realistic synthetic dataset. Preliminary results on experimental beta-galactosidase and 80S ribosome data demonstrate the ability of CryoGAN to exploit data statistics under standard experimental imaging conditions. We believe that this paradigm opens the door to a family of novel likelihood-free algorithms for cryo-EM reconstruction.

Michael Thompson McCann, Michaël Unser

This tutorial covers biomedical image reconstruction, from the foundational concepts of system modeling and direct reconstruction to modern sparsity and learning-based approaches. Imaging is a critical tool in biological research and medicine, and most imaging systems necessarily use an image reconstruction algorithm to create an image; the design of these algorithms has been a topic of research since at least the 1960’s. In the last few years, machine learning-based approaches have shown impressive performance on image reconstruction problems, triggering a wave of enthusiasm and creativity around the paradigm of learning. Our goal is to unify this body of research, identifying common principles and reusable building blocks across decades and among diverse imaging modalities. We first describe system modeling, emphasizing how a few building blocks can be used to describe a broad range of imaging modalities. We then discuss reconstruction algorithms, grouping them into three broad generations. The first are the classical direct methods, including Tikhonov regularization; the second are the variational methods based on sparsity and the theory of compressive sensing; and the third are the learning-based (also called data-driven) methods, especially those using deep convolutional neural networks. There are strong links between these generations: classical (first-generation) methods appear as modules inside the latter two, and the former two are used to inspire new designs for learning-based (third-generation) methods. As a result, a solid understanding of all three generations is necessary for the design of state-of-the-art algorithms.

2019Thomas Jean Debarre, Laurène Donati, Michael Thompson McCann, Thanh-An Michel Pham, Daniel Sage, Emmanuel Emilien Louis Soubies, Ferréol Arnaud Marie Soulez, Michaël Unser

GlobalBioIm is an open-source MATLAB (R) library for solving inverse problems. The library capitalizes on the strong commonalities between forward models to standardize the resolution of a wide range of imaging inverse problems. Endowed with an operator-algebra mechanism, GlobalBioIm allows one to easily solve inverse problems by combining elementary modules in a lego-like fashion. This user-friendly toolbox gives access to cutting-edge reconstruction algorithms, while its high modularity makes it easily extensible to new modalities and novel reconstruction methods. We expect GlobalBioIm to respond to the needs of imaging scientists looking for reliable and easy-to-use computational tools for solving their inverse problems. In this paper, we present in detail the structure and main features of the library. We also illustrate its flexibility with examples from multichannel deconvolution microscopy.