**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Personne# Buddhima Ruwanmini Gamlath Gamlath Ralalage

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Unités associées

Chargement

Cours enseignés par cette personne

Chargement

Domaines de recherche associés

Chargement

Publications associées

Chargement

Personnes menant des recherches similaires

Chargement

Domaines de recherche associés

Personnes menant des recherches similaires

Aucun résultat

Aucun résultat

Publications associées (4)

Chargement

Chargement

Chargement

Unités associées (2)

Cours enseignés par cette personne

Aucun résultat

Buddhima Ruwanmini Gamlath Gamlath Ralalage, Xinrui Jia, Adam Teodor Polak, Ola Nils Anders Svensson

We study the problem of explainable clustering in the setting first formalized by Dasgupta, Frost, Moshkovitz, and Rashtchian (ICML 2020). A k-clustering is said to be explainable if it is given by a decision tree where each internal node splits data points with a threshold cut in a single dimension (feature), and each of the k leaves corresponds to a cluster. We give an algorithm that outputs an explainable clustering that loses at most a factor of O(log2 k) compared to an optimal (not necessarily explainable) clustering for the k-medians objective, and a factor of O(k log2 k) for the k-means objective. This improves over the previous best upper bounds of O(k) and O(k2), respectively, and nearly matches the previous Ω(log k) lower bound for k-medians and our new Ω(k) lower bound for k-means. The algorithm is remarkably simple. In particular, given an initial not necessarily explainable clustering in Rd, it is oblivious to the data points and runs in time O(dk log2 k), independent of the number of data points n. Our upper and lower bounds also generalize to objectives given by higher ℓp-norms. © 2021 Neural information processing systems foundation.

2021, , , ,

The online matching problem was introduced by Karp, Vazirani and Vazirani nearly three decades ago. In that seminal work, they studied this problem in bipartite graphs with vertices arriving only on one side, and presented optimal deterministic and randomized algorithms for this setting. In comparison, more general arrival models, such as edge arrivals and general vertex arrivals, have proven more challenging and positive results are known only for various relaxations of the problem. In particular, even the basic question of whether randomization allows one to beat the trivially-optimal deterministic competitive ratio of 1/2 for either of these models was open. In this paper, we resolve this question for both these natural arrival models, and show the following. 1) For edge arrivals, randomization does not help no randomized algorithm is better than 1/2 competitive. 2) For general vertex arrivals, randomization helps - there exists a randomized (1/2+Omega (1))-competitive online matching algorithm.

This thesis focuses on the maximum matching problem in modern computational settings where the algorithms have to make decisions with partial information.First, we consider two stochastic models called query-commit and price-of-information where the algorithm only knows the distribution from which the edges are sampled.In the query-commit model, the algorithm must query edges to know if they exist and is committed to adding all queried edges that exist to its output.In the price-of-information model, the algorithm incurs costs for querying edges, and the total query cost is subtracted from the output matching's weight.For maximum weighted matching in these models, previously known best algorithms were greedy algorithms that achieve 1/2 approximations. We improve the approximation ratio to 1 - 1/e in both models. Next, we consider situations where the input graphs do not fit into the space available for an algorithm instance. We consider two such models: the semi-streaming model where the algorithm receives the input as a stream of edges and the algorithm has only sub-linear (in the number of edges) space, and the massively parallel computation (MPC) model where the input is distributed among several machines, each of which has sub-linear space, and algorithm instances running on different machines must communicate in synchronous rounds.We start with a particular case of the semi-streaming model where the edges arrive in uniformly random order, and the algorithm goes over the stream only once. For this setting, we give the first algorithm that finds a (1/2 + c)-approximate maximum weighted matching in expectation; such algorithms were previously known only for the unweighted graphs.We then show how to efficiently find (1 - epsilon)-approximate weighted matchings for any epsilon > 0 in multi-pass semi-streaming and MPC models by extending our algorithmic ideas used in the single-pass semi-streaming model with random order edge arrivals.Finally, we study online algorithms for matching, where the input graph is gradually revealed over time. In the online edge-arrival setting, the graph is revealed one edge at a time, and an algorithm is forced to make irrevocable decisions on whether to add each edge to the output matching upon their arrival. We show that no online algorithm can achieve a competitive ratio of 1/2 + c for any constant c > 0 in this setting.In the online vertex-arrival setting, the graph is revealed one vertex at a time, together with its incident edges to already revealed vertices, and the algorithm must irrevocably decide to ignore the revealed vertex or match it to one of the available neighbors.In this setting, we show how to round a previously known fractional online matching algorithm to get an integral online matching algorithm with a competitive ratio of 1/2 + c for some constant c > 0.