The Schur decomposition of a square matrix A is an important intermediate step of state-of-the-art numerical algorithms for addressing eigenvalue problems, matrix functions, and matrix equations. This work is concerned with the following task: Compute a (m ...
A few matrix-vector multiplications with random vectors are often sufficient to obtain reasonably good estimates for the norm of a general matrix or the trace of a symmetric positive semi-definite matrix. Several such probabilistic estimators have been pro ...
Any symmetric matrix can be reduced to antitriangular form in finitely many steps by orthogonal similarity transformations. This form reveals the inertia of the matrix and has found applications in, e.g., model predictive control and constraint preconditio ...
The QZ algorithm for computing eigenvalues and eigenvectors of a matrix pencil A - lambda B requires that the matrices first be reduced to Hessenberg-triangular (HT) form. The current method of choice for HT reduction relies entirely on Givens rotations re ...