Philippe Renaud, Arnaud Bertsch, Marc Olivier Heuschkel, Patrick Fraering, Sébastien Mosser, Yufei Ren, Shun-Ho Huang, Jingjing Chen
Polydimethylsiloxane (PDMS) and SU-8 are currently two very commonly used polymeric materials in the microfluidics field for biological applications. However; there is a pressing need to find a simple, reliable, irreversible bonding method between these two materials for their combined use in innovative integrated microsystems. In this paper; we attempt to investigate the aminosilane-mediated irreversible bonding method for PDMS and SU-8 with X-Ray Photoelectron Spectroscopy (XPS) surface analysis and bonding strength tests. Additionally; the selected bonding method was applied in fabricating a microelectrode array (MEA) device, including microfluidic features, which allows electrophysiological observations on compartmentalized neuronal cultures. As there is a growing trend towards microfluidic devices for neuroscience research, this type of integrated microdevice, which can observe functional alterations on compartmentalized neuronal culture, can potentially be used for neurodegenerative disease research and pharmaceutical development.
MDPI2015