Personne

Carlo Gigli

Publications associées (4)

Subwavelength imaging using a solid-immersion diffractive optical processor

Demetri Psaltis, Carlo Gigli, Niyazi Ulas Dinç, Yang Li

Phase imaging is widely used in biomedical imaging, sensing, and material characterization, among other fields. However, direct imaging of phase objects with subwavelength resolution remains a challenge. Here, we demonstrate subwavelength imaging of phase ...
Springernature2024

Predicting nonlinear optical scattering with physics-driven neural networks

Demetri Psaltis, Carlo Gigli, Ahmed Ayoub

Deep neural networks trained on physical losses are emerging as promising surrogates for nonlinear numerical solvers. These tools can predict solutions to Maxwell's equations and compute gradients of output fields with respect to the material and geometric ...
AIP Publishing2023

Physics-informed neural networks for diffraction tomography

Demetri Psaltis, Carlo Gigli, Amirhossein Saba Shirvan, Ahmed Ayoub

We propose a physics-informed neural network (PINN) as the forward model for tomographic reconstructions of biological samples. We demonstrate that by training this network with the Helmholtz equation as a physical loss, we can predict the scattered field ...
SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS2022

Xeno Nucleic Acid Nanosensors for Enhanced Stability Against Ion-Induced Perturbations

Ardemis Anoush Boghossian, Carlo Gigli, Alice Judith Gillen, Justyna Kupis-Rozmyslowicz

The omnipresence of salts in biofluids creates a pervasive challenge in designing sensors suitable for in vivo applications. Fluctuations in ion concentrations have been shown to affect the sensitivity and selectivity of optical sensors based on single-wal ...
2018

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.