Dynamical potentials appear in many advanced electronic-structure methods, including self-energies from many-body perturbation theory, dynamical mean-field theory, electronic-transport formulations, and many embedding approaches. Here, we propose a novel t ...
In this paper, we study self-consistent solutions in one-dimensional lattice models obtained via many-body perturbation theory. The Dyson equation is solved in a fully self-consistent manner via the algorithmic-inversion method based on the sum-over-poles ...
Superionics are fascinating materials displaying both solid- and liquid-like characteristics: as solids, they respond elastically to shear stress; as liquids, they display fast-ion diffusion at normal conditions. In addition to such scientific interest, su ...
In Green's function theory, the total energy of an interacting many-electron system can be expressed in a variational form using the Klein or Luttinger-Ward functionals. Green's function theory also naturally addresses the case where the interacting system ...
Empowered by ever-increasing computational power and algorithmic developments, electronic-structure simulations continue to drive research and innovation in materials science. In this context, ab-initio calculations offer an unbiased platform for the under ...
In the GW approximation, the screened interaction W is a nonlocal and dynamical potential that usually has a complex frequency dependence. A full description of such a dependence is possible but often computationally demanding. For this reason, it is still ...
Energy functionals of the Green's function can simultaneously provide spectral and thermodynamic properties of interacting electrons' systems. Although powerful in principle, these formulations need to deal with dynamical (frequency-dependent) quantities, ...