Personne

Aymeric Daphnis Kévin Dieuleveut

Cette personne n’est plus à l’EPFL

Publications associées (5)

Context Mover's Distance & Barycenters: Optimal Transport of Contexts for Building Representations

Martin Jaggi, Aymeric Daphnis Kévin Dieuleveut, Sidak Pal Singh, Andreas Hug

We present a framework for building unsupervised representations of entities and their compositions, where each entity is viewed as a probability distribution rather than a vector embedding. In particular, this distribution is supported over the contexts w ...
ADDISON-WESLEY PUBL CO2020

On Convergence-Diagnostic based Step Sizes for Stochastic Gradient Descent

Nicolas Henri Bernard Flammarion, Scott William Pesme, Aymeric Daphnis Kévin Dieuleveut

Constant step-size Stochastic Gradient Descent exhibits two phases: a transient phase during which iterates make fast progress towards the optimum, followed by a stationary phase during which iterates oscillate around the optimal point. In this paper, we s ...
2020

Communication trade-offs for Local-SGD with large step size

Aymeric Daphnis Kévin Dieuleveut

Synchronous mini-batch SGD is state-of-the-art for large-scale distributed machine learning. However, in practice, its convergence is bottlenecked by slow communication rounds between worker nodes. A natural solution to reduce communication is to use the " ...
NEURAL INFORMATION PROCESSING SYSTEMS (NIPS)2019

Unsupervised Scalable Representation Learning for Multivariate Time Series

Martin Jaggi, Aymeric Daphnis Kévin Dieuleveut

Time series constitute a challenging data type for machine learning algorithms, due to their highly variable lengths and sparse labeling in practice. In this paper, we tackle this challenge by proposing an unsupervised method to learn universal embeddings ...
NEURAL INFORMATION PROCESSING SYSTEMS (NIPS)2019

Harder, Better, Faster, Stronger Convergence Rates for Least-Squares Regression

Nicolas Henri Bernard Flammarion, Aymeric Daphnis Kévin Dieuleveut

We consider the optimization of a quadratic objective function whose gradients are only accessible through a stochastic oracle that returns the gradient at any given point plus a zero-mean finite variance random error. We present the first algorithm that a ...
2017

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.