Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Natural language processing has experienced significant improvements with the development of Transformer-based models, which employ self-attention mechanism and pre-training strategies. However, these models still present several obstacles. A notable issue ...
We propose the Recursive Non-autoregressive Graph-to-graph Transformer architecture (RNG-Tr) for the iterative refinement of arbitrary graphs through the recursive application of a non-autoregressive Graph-to-Graph Transformer and apply it to syntactic dep ...
We describe the DCU-EPFL submission to the IWPT 2021 Parsing Shared Task: From Raw Text to Enhanced Universal Dependencies. The task involves parsing Enhanced UD graphs, which are an extension of the basic dependency trees designed to be more facilitative ...
ASSOC COMPUTATIONAL LINGUISTICS-ACL2021
,
We propose the Graph2Graph Transformer architecture for conditioning on and predicting arbitrary graphs, and apply it to the challenging task of transition-based dependency parsing. After proposing two novel Transformer models of transition-based dependenc ...
Association for Computational Linguistics2020
, ,
In this paper, we propose a new approach to learn multimodal multilingual embeddings for matching images and their relevant captions in two languages. We combine two existing objective functions to make images and captions close in a joint embedding space ...
In this paper, we propose a new approach to learn multimodal multilingual embeddings for matching images and their relevant captions in two languages. We combine two existing objective functions to make images and captions close in a joint embedding space ...