We characterize the photochemically relevant conical intersections between the lowest-lying accessible electronic excited states of the different DNA/RNA nucleobases using Cholesky decomposition-based complete active space self-consistent field (CASSCF) al ...
We present an implementation of the Frenkel exciton model into the OpenMolcas program package enabling calculations of collective electronic excited states of molecular aggregates based on a multiconfigurational wave function description of the individual ...
The design of novel cathode materials for Li-ion batteries would greatly benefit from accurate first-principles predictions of structural, electronic, and magnetic properties as well as intercalation voltages in compounds containing transition-metal elemen ...
We present a derivation of the exact expression for Pulay forces in density-functional theory calculations augmented with extended Hubbard functionals and arising from the use of orthogonalized atomic orbitals as projectors for the Hubbard manifold. The de ...
MOLCAS/OpenMolcas is an ab initio electronic structure program providing a large set of computational methods from Hartree-Fock and density functional theory to various implementations of multiconfigurational theory. This article provides a comprehensive o ...
The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments sp ...