Personne

Yufan Ren

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (3)

Veuillez noter qu'il ne s'agit pas d'une liste complète des publications de cette personne. Elle inclut uniquement les travaux sémantiquement pertinents. Pour une liste complète, veuillez consulter Infoscience.

VolRecon: Volume Rendering of Signed Ray Distance Functions for Generalizable Multi-View Reconstruction

Sabine Süsstrunk, Tong Zhang, Yufan Ren

The success of the Neural Radiance Fields (NeRF) in novel view synthesis has inspired researchers to propose neural implicit scene reconstruction. However, most existing neural implicit reconstruction methods optimize perscene parameters and therefore lack ...
2024

Efficient Temporally-Aware DeepFake Detection using H.264 Motion Vectors

Sabine Süsstrunk, Yufan Ren, Peter Arpad Grönquist, Alessio Verardo, Qingyi He

Video DeepFakes are fake media created with Deep Learning (DL) that manipulate a person’s expression or identity. Most current DeepFake detection methods analyze each frame independently, ignoring inconsistencies and unnatural movements between frames. Som ...
2024

Learning V1 Simple Cells with Vector Representation of Local Content and Matrix Representation of Local Motion

Yufan Ren, Siyuan Huang

This paper proposes a representational model for image pairs such as consecutive video frames that are related by local pixel displacements, in the hope that the model may shed light on motion perception in primary visual cortex (V1). The model couples the ...
ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE2022

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.