Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of spatial periodicity. Our variational state is parametrized in terms of a permutationally invariant part described by the Deep Sets neural-n ...
Neural network approaches to approximate the ground state of quantum hamiltonians require the numerical solution of a highly nonlinear optimization problem. We introduce a statistical learning approach that makes the optimization trivial by using kernel me ...
Wien2023
, , ,
We analyze the accuracy and sample complexity of variational Monte Carlo approaches to simulate the dynamics of many-body quantum systems classically. By systematically studying the relevant stochastic estimators, we are able to: (i) prove that the most us ...
We introduce a systematically improvable family of variational wave functions for the simulation of strongly correlated fermionic systems. This family consists of Slater determinants in an augmented Hilbert space involving “hidden” additional fermionic deg ...
The ground-breaking works of Weinberg have opened the way to calculations of atomic nuclei that are based on systematically improvable Hamiltonians. Solving the associated many-body Schrodinger equation involves non-trivial difficulties, due to the non-per ...
Neural-network quantum states (NQS) have been shown to be a suitable variational ansatz to simulate out-of-equilibrium dynamics in two-dimensional systems using timedependent variational Monte Carlo (t-VMC). In particular, stable and accurate time propagat ...
The variational approach is a cornerstone of computational physics, considering both conventional and quantum computing computational platforms. The variational quantum eigensolver algorithm aims to prepare the ground state of a Hamiltonian exploiting para ...
We generalize the hidden-fermion family of neural network quantum states to encompass both continuous and discrete degrees of freedom and solve the nuclear many-body Schrodinger equation in a systematically improvable fashion. We demonstrate that adding hi ...
We propose a variational quantum algorithm to study the real-time dynamics of quantum systems as a ground -state problem. The method is based on the original proposal of Feynman and Kitaev to encode time into a register of auxiliary qubits. We prepare the ...
AMER PHYSICAL SOC2022
By taking inspiration from the backflow transformation for correlated systems, we introduce a tensor network Ansatz which extends the well-established matrix product state representation of a quantum many-body wave function. This structure provides enough ...