Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Realand imaginary -time quantum state evolutions are crucial in physics and chemistry for exploring quantum dynamics, preparing ground states, and computing thermodynamic observables. On near -term devices, variational quantum time evolution is a promising ...
In the standard framework of self-consistent many-body perturbation theory, the skeleton series for the self-energy is truncated at a finite order N and plugged into the Dyson equation, which is then solved for the propagator G(N). We consider two examples ...
We investigate the momentum-resolved spin and charge susceptibilities, as well as the chemical potential and double occupancy in the two-dimensional Hubbard model as functions of doping, temperature, and interaction strength. Through these quantities, we i ...
Neural network approaches to approximate the ground state of quantum hamiltonians require the numerical solution of a highly nonlinear optimization problem. We introduce a statistical learning approach that makes the optimization trivial by using kernel me ...
Bolometry is an essential diagnostic for calculating the power balances and for the understanding of different physical aspects of tokamak experiments. The reconstruction method based on the Maximum Likelihood (ML) principle, developed initially for JET, h ...
Efficient sampling of complex high-dimensional probability distributions is a central task in computational science. Machine learning methods like autoregressive neural networks, used with Markov chain Monte Carlo sampling, provide good approximations to s ...