We propose a test -time adaptation for 6D object pose tracking that learns to adapt a pre -trained model to track the 6D pose of novel objects. We consider the problem of 6D object pose tracking as a 3D keypoint detection and matching task and present a mo ...
The collimation system of the Future Circular Collider, operating with leptons (FCC-ee), must protect not only the experiments against backgrounds, but also the machine itself from beam losses. With a 17.8 MJ stored energy of the electron and positron beam ...
The goal of this work is to use anisotropic adaptive finite elements for the numerical simulation of aluminium electrolysis. The anisotropic adaptive criteria are based on a posteriori error estimates derived for simplified problems. First, we consider an ...
We develop new tools to study landscapes in nonconvex optimization. Given one optimization problem, we pair it with another by smoothly parametrizing the domain. This is either for practical purposes (e.g., to use smooth optimization algorithms with good g ...
Deep heteroscedastic regression involves jointly optimizing the mean and covariance of the predicted distribution using the negative log-likelihood. However, recent works show that this may result in sub-optimal convergence due to the challenges associated ...
Purpose: To develop a self-navigated motion compensation strategy for 3D radial MRI that can compensate for continuous head motion by measuring rigid body motion parameters with high temporal resolution from the central k-space acquisition point (self-enco ...
VR (Virtual Reality) is a real-time simulation that creates the subjective illusion of being in a virtual world.
This thesis explores how integrating the user's body and fingers can be achieved and beneficial for the user to experience VR.
At the advent of ...
Control systems operating in real-world environments often face disturbances arising from measurement noise and model mismatch. These factors can significantly impact the perfor- mance and safety of the system. In this thesis, we aim to leverage data to de ...
Non-convex constrained optimization problems have become a powerful framework for modeling a wide range of machine learning problems, with applications in k-means clustering, large- scale semidefinite programs (SDPs), and various other tasks. As the perfor ...
In this paper, we present a spatial branch and bound algorithm to tackle the continuous pricing problem, where demand is captured by an advanced discrete choice model (DCM). Advanced DCMs, like mixed logit or latent class models, are capable of modeling de ...