Still displaying characteristics of their bacterial origin, such as autonomous division, motility, and their own genome, mitochondria remain an elusive component of modern eukaryotes. They produce most of the cell's energy in the form of adenosine triphosp ...
Structural, functional and molecular cardiac defects have been reported in spinal muscular atrophy (SMA) patients and mouse models. Previous quantitative proteomics analyses demonstrated widespread molecular defects in the severe Taiwanese SMA mouse model. ...
The transaortic valvular pressure gradient (TPG) plays a central role in decision-making for patients suffering from severe aortic stenosis. However, the flow-dependence nature of the TPG makes the diagnosis of aortic stenosis challenging since the markers ...
The natural compound Cyclo Histidine-Proline (CHP) was initially discovered in the brain, but thereafter evaluated in the context of diabetes because of its hypoglycemic action. The pharmacokinetics and the toxicological profile of CHP showed it can be dos ...
Reducing the computational time required by high-fidelity, full-order models (FOMs) for the solution of problems in cardiac mechanics is crucial to allow the translation of patient-specific simulations into clinical practice. Indeed, while FOMs, such as th ...
We propose a mathematical and numerical model for the simulation of the heart function that couples cardiac electrophysiology, active and passive mechanics and hemodynamics, and includes reduced models for cardiac valves and the circulatory system. Our mod ...
Hypertension is the most common cause of left ventricular hypertrophy, contributing to heart failure progression. Candesartan (Cand) is an angiotensin receptor antagonist widely used for hypertension treatment. Structural modifications were previously perf ...
The aim of this paper is to introduce a new mathematical model that simulates myocardial blood perfusion that accounts for multiscale and multiphysics features. Our model incorporates cardiac electrophysiology, active and passive mechanics, hemodynamics, v ...
Background: The impact of acute unilateral injury on spontaneous electrical activity in both vagus nerves at the heart level is poorly understood. We investigated the immediate neuroelectrical response after right or left cardiac vagal nerve transection (V ...
Background: Simulating the cardiac function requires the numerical solution of multi-physics and multi-scale mathematical models. This underscores the need for streamlined, accurate, and high-performance computational tools. Despite the dedicated endeavors ...