The last two decades have seen the development of organoid models for many different tissues and organs. Organoids are three-dimensional organ-mimetics derived from stem or progenitor cells comprising various specialized cell types, resembling the architec ...
Traditional cell cultures have long been fundamental to biological research, offering an alternative to animal models burdened by ethical constraints and procedural intricacies, often lacking relevance to human physiology and disease. Moreover, their inabi ...
Cell fate progression of pluripotent progenitors is strictly regulated, resulting in high human cell diversity. Epigenetic modifications also orchestrate cell fate restriction. Unveiling the epigenetic mechanisms underlying human cell diversity has been di ...
Biological research heavily relies on the use of animal models, which has made it difficult to answer specific questions about human biology and disease. However, with the advent of human organoids - miniature versions of tissues generated in 3D human stem ...
Self-renewal and differentiation of stem and progenitor cells are tightly regulated to ensure tissue homeostasis. This regulation is enabled both remotely by systemic circulating cues, such as cytokines and hormones, and locally by various niche-confined f ...
It is well established that surface topography can affect cell functions. However, finding a reproducible and reliable method for regulating stem cell behavior is still under investigation. It has been shown that cell imprinted substrates contain micro- an ...
Complex three-dimensional in vitro organ-like models, or organoids, offer a unique biological tool with distinct advantages over two-dimensional cell culture systems, which can be too simplistic, and animal models, which can be too complex and may fail to ...
The liver is the largest solid organ and the only one capable of using regenerative mechanisms to recover its mass fully. Although liver regeneration from acute injuries has been effective and extensively studied, chronic liver damage has adverse effects o ...
In humans, mice, and other mammals key internal organs such as the gut, the lungs, the pancreas, and the liver all derive from the same embryonic tissue: the endoderm. The development of all of these structures thus depends on a same set of early cells, an ...
In vitro models of human liver functions are used across a diverse range of applications in preclinical drug development and disease modeling, with particular increasing interest in models that capture facets of liver inflammatory status. This study invest ...