Instrumentation development for wall shear-stress applications in 3D complex flows
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The flow field of multiple-cylinder configurations exhibits complex interactions between shear layers, vortexes and wakes. For high stem-Reynolds numbers, the flow is turbulent and, low and intermediate areal number-densities of cylinders, and turbulence i ...
A.J. Schleiss, G. De Cesare, M. Franca, M. Pfister2014
Heat-transfer enhancement in a uniformly heated slot mini-channel due to vortices shed from an adiabatic circular cylinder is numerically investigated. The effects of gap spacing between the cylinder and bottom wall on wall heat transfer and pressure drop ...
Pulsating heat pipes (PHPs) represent a promising solution for passive on-chip, two-phase cooling of micro-electronics, providing advantages such as a simple construction and operation in any gravitational orientation. Unfortunately, the unique coupling of ...
Parallel shear flows have continuous symmetries of translation in the downstream and spanwise directions. As a consequence, flow states that differ in their spanwise or downstream location but are otherwise identical are dynamically equivalent. In the case ...
This work consists in an experimental study of the main parameters governing the transport of heat across an interface between two solids, when it is dominated by phonons. The main experimental tool used is Time-Domain ThermoReflectance (TDTR), which is an ...
Shear velocity u(*) is an important parameter in geophysical flows, in particular with respect to sediment transport dynamics. In this study, we investigate the feasibility of applying five standard methods [the logarithmic mean velocity profile, the Reyno ...
In linearly stable shear flows at moderate Reynolds number, turbulence spontaneously decays despite the existence of a codimension-one manifold, termed the edge, which separates decaying perturbations from those triggering turbulence. We statistically anal ...
A new wall shear stress model to be used as a wall boundary condition for large-eddy simulations of the atmospheric boundary layer is proposed. The new model computes the wall shear stress and the vertical derivatives of the streamwise velocity component b ...
Particle-laden boundary flows occur in many geophysical and industrial environments yet are difficult to understand and quantitatively describe because the interactions of an often turbulent boundary layer flow with surface and particle dynamics are comple ...
We study the longitudinal linear optimal perturbations (which maximize the energy gain up to a prescribed time T) to inviscid parallel shear flow, which present unbounded energy growth due to the lift-up mechanism. Using the phase invariance with respect t ...