The anisotropic quantum spin- 1 2 XY model on a linear chain was solved by Lieb, Schultz, and Mattis [Ann. Phys. 16, 407 (1961)] and shown to display a continuous quantum phase transition at the O(2) symmetric point separating two gapped phases with competing Ising long-range order. For the square lattice, the following is known. The two competing Ising ordered phases extend to finite temperatures, up to a boundary where a transition to the paramagnetic phase occurs, and meet at the O(2) symmetric critical line along the temperature axis that ends at a tricritical point at the Berezinskii-Kosterlitz-Thouless transition temperature where the two competing phases meet the paramagnetic phase. We show that the first-order zero-temperature (quantum) phase transition that separates the competing phases as a function of the anisotropy parameter is smoothed by thermal fluctuations into deconfined classical criticality.