Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We propose an improvement to the reduced basis method for parametric partial differential equations. An assumption of affine parameterization leads to an efficient offline-online decomposition when the problem is solved for many different parametric config ...
We consider the problem of learning by demonstration from agents acting in unknown stochastic Markov environments or games. Our aim is to estimate agent preferences in order to construct improved policies for the same task that the agents are trying to sol ...
Many recent algorithms for sparse signal recovery can be interpreted as maximum-a-posteriori (MAP) estimators relying on some specific priors. From this Bayesian perspective, state-of-the-art methods based on discrete-gradient regularizers, such as total- ...
[B. Fares et al., J. Comput. Phys., 230 (2011), pp. 5532-5555], a reduced basis method (RBM) for the electric field integral equation (EFIE) using the boundary element method (BEM) is developed, based on a simplified a posteriori error estimator for the gr ...
The convergence and efficiency of the reduced basis method used for the approximation of the solutions to a class of problems written as a parametrized PDE depends heavily on the choice of the elements that constitute the "reduced basis". The purpose of th ...
In this paper we present an a posteriori error analysis for elliptic homogenization problems discretized by the finite element heterogeneous multiscale method. Unlike standard finite element methods, our discretization scheme relies on macro- and microfini ...
Many recent algorithms for sparse signal recovery can be interpreted as maximum-a-posteriori (MAP) estimators relying on some specific priors. From this Bayesian perspective, state-of-the-art methods based on discrete-gradient regularizers, such as total-v ...
In this paper we aim at controlling physically meaningful quantities with emphasis on environmental applications. This is carried out by an efficient numerical procedure combining the goal-oriented framework [R. Becker, R. Rannacher, An optimal control app ...
We present a technique for the rapid and reliable prediction of linear-functional outputs of coercive and non-coercive linear elliptic partial differential equations with affine parameter dependence. The essential components are: (i) rapidly convergent glo ...
We compute solutions of solutal phase-field models for dendritic growth of an isothermal binary alloy using anisotropic mesh refinement techniques. The adaptive strategy is based on anisotropic a posteriori estimators using a superconvergent recovery techn ...