Simulating learning in interorganizational networks: The insidious role of task interdependence and relational instability in system-level learning
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This thesis focuses on two selected learning problems: 1) statistical inference on graphs models, and, 2) gradient descent on neural networks, with the common objective of defining and analysing the measures that characterize the fundamental limits.In the ...
With the advent of the Square Kilometre Array Observatory (SKAO), scientists will be able to directly observe the Epoch of Reionization by mapping the distribution of neutral hydrogen at different redshifts. While physically motivated results can be simula ...
Finding optimal bidding strategies for generation units in electricity markets would result in higher profit. However, it is a challenging problem due to the system uncertainty which is due to the lack of knowledge of the strategies of other generation uni ...
We generalize the bulk-synchronous parallel (BSP) processing model to make it better support agent-based simulations. Such simulations frequently exhibit hierarchical structure in their communication patterns which can be exploited to improve performance. ...
Agent-based simulations have been widely applied in many disciplines, by scientists and engineers alike. Scientists use agent-based simulations to tackle global problems, including alleviating poverty, reducing violence, and predicting the impact of pandem ...
Machine learning is often cited as a new paradigm in control theory, but is also often viewed as empirical and less intuitive for students than classical model-based methods. This is particularly the case for reinforcement learning, an approach that does n ...
Learning socially-aware motion representations is at the core of recent advances in multi-agent problems, such as human motion forecasting and robot navigation in crowds. Despite promising progress, existing representations learned with neural networks sti ...
Decentralized learning (DL) has gained prominence for its potential benefits in terms of scalability, privacy, and fault tolerance. It consists of many nodes that coordinate without a central server and exchange millions of parameters in the inherently ite ...
Neuromorphic computing is a wide research field aimed to the realization of brain-inspired
hardware, apt to tackle computation of unstructured data more efficiently than currently done
with standard computational units. Oscillatory neural networks are know ...
An adaptive network consists of multiple communicating agents, equipped with sensing and learning abilities that allow them to extract meaningful information from measurements. The objective of the network is to solve a global inference problem in a decent ...