Arbre cartésienvignette|240x240px| Une séquence de nombres et l'arbre cartésien qui en dérive. En algorithmique, un arbre cartésien est un arbre binaire construit à partir d'une séquence de nombres. Il est défini comme un tas dont un parcours symétrique de l'arbre renvoie la séquence d'origine. Introduits par Jean Vuillemin (1980) dans le cadre des structures de données de recherche par plage géométrique, les arbres cartésiens ont également été utilisés dans la définition des arbres-tas et des structures de données d'arbres de recherche binaire randomisés pour les problèmes de recherche dichotomique.
Quantification (signal)En traitement des signaux, la quantification est le procédé qui permet d'approcher un signal continu par les valeurs d'un ensemble discret d'assez petite taille. On parle aussi de quantification pour approcher un signal à valeurs dans un ensemble discret de grande taille par un ensemble plus restreint. L'application la plus courante de la quantification est la conversion analogique-numérique mais elle doit le développement de sa théorie aux problèmes de quantification pour la compression de signaux audio ou .
Partition function (number theory)In number theory, the partition function p(n) represents the number of possible partitions of a non-negative integer n. For instance, p(4) = 5 because the integer 4 has the five partitions 1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 3, 2 + 2, and 4. No closed-form expression for the partition function is known, but it has both asymptotic expansions that accurately approximate it and recurrence relations by which it can be calculated exactly. It grows as an exponential function of the square root of its argument.
Largeur arborescenteEn théorie des graphes et en informatique théorique, la largeur arborescente ou largeur d'arbre d'un graphe (treewidth en anglais) est un nombre qui, intuitivement, mesure s'il est proche d'un arbre. Elle peut être définie de plusieurs manières, notamment en utilisant la décomposition arborescente. Souvent, un problème algorithmique facile sur les arbres est en fait facile pour les graphes qui ressemblent à des arbres. Ainsi, ce paramètre est souvent utilisé en algorithmique de graphes, notamment pour les schémas d'approximation polynomiaux et complexité paramétrée.
Truncated normal distributionIn probability and statistics, the truncated normal distribution is the probability distribution derived from that of a normally distributed random variable by bounding the random variable from either below or above (or both). The truncated normal distribution has wide applications in statistics and econometrics. Suppose has a normal distribution with mean and variance and lies within the interval . Then conditional on has a truncated normal distribution. Its probability density function, , for , is given by and by otherwise.
Rank of a partitionIn mathematics, particularly in the fields of number theory and combinatorics, the rank of a partition of a positive integer is a certain integer associated with the partition. In fact at least two different definitions of rank appear in the literature. The first definition, with which most of this article is concerned, is that the rank of a partition is the number obtained by subtracting the number of parts in the partition from the largest part in the partition.
Gibbs measureIn mathematics, the Gibbs measure, named after Josiah Willard Gibbs, is a probability measure frequently seen in many problems of probability theory and statistical mechanics. It is a generalization of the canonical ensemble to infinite systems. The canonical ensemble gives the probability of the system X being in state x (equivalently, of the random variable X having value x) as Here, E is a function from the space of states to the real numbers; in physics applications, E(x) is interpreted as the energy of the configuration x.