Subtree-based bounds and simulation-based estimations for the partition function
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this paper, we study sampling from a posterior derived from a neural network. We propose a new probabilistic model consisting of adding noise at every pre- and post-activation in the network, arguing that the resulting posterior can be sampled using an ...
Information theory has allowed us to determine the fundamental limit of various communication and algorithmic problems, e.g., the channel coding problem, the compression problem, and the hypothesis testing problem. In this work, we revisit the assumptions ...
The field of biometrics, and especially face recognition, has seen a wide-spread adoption the last few years, from access control on personal devices such as phones and laptops, to automated border controls such as in airports. The stakes are increasingly ...
Sample efficiency is a fundamental challenge in de novo molecular design. Ideally, molecular generative models should learn to satisfy a desired objective under minimal calls to oracles (computational property predictors). This problem becomes more apparen ...
This paper offers a new algorithm to efficiently optimize scheduling decisions for dial-a-ride problems (DARPs), including problem variants considering electric and autonomous vehicles (e-ADARPs). The scheduling heuristic, based on linear programming theor ...
Situational awareness strategies are essential for the reliable and secure operation of the electric power grid which represents critical infrastructure in modern society. With the rise of converter-interfaced renewable generation and the consequent shift ...
In light of the challenges posed by climate change and the goals of the Paris Agreement, electricity generation is shifting to a more renewable and decentralized pattern, while the operation of systems like buildings is increasingly electrified. This calls ...
Distributed learning is the key for enabling training of modern large-scale machine learning models, through parallelising the learning process. Collaborative learning is essential for learning from privacy-sensitive data that is distributed across various ...
Multiple tensor-times-matrix (Multi-TTM) is a key computation in algorithms for computing and operating with the Tucker tensor decomposition, which is frequently used in multidimensional data analysis. We establish communication lower bounds that determine ...
We propose an adaptive quantum algorithm to prepare accurate variational time evolved wave functions. The method is based on the projected variational quantum dynamics (pVQD) algorithm, that performs a global optimization with linear scaling in the number ...