Théorie des graphes extrémauxEn théorie des graphes, un graphe extrémal (anglais : extremal graph) par rapport à une propriété est un graphe tel que l'ajout de n'importe quelle arête amène le graphe à vérifier la propriété . L'étude des graphes extrémaux se décompose en deux sujets : la recherche de bornes inférieures sur le nombre d'arêtes nécessaires à assurer la propriété (voire sur d'autres paramètres comme le degré minimum) et la caractérisation des graphes extrémaux proprement dits. L'étude des graphes extrémaux est une branche de l'étude combinatoire des graphes.
CombinatoireEn mathématiques, la combinatoire, appelée aussi analyse combinatoire, étudie les configurations de collections finies d'objets ou les combinaisons d'ensembles finis, et les dénombrements. La combinatoire est en fait présente dans toute l'antiquité en Inde et en Chine. Donald Knuth, dans le volume 4A « Combinatorial Algorithms » de The Art of Computer Programming parle de la génération de n-uplets ; il dit que la génération de motifs combinatoires «a commencé alors que la civilisation elle-même prenait forme» (« began as civilization itself was taking shape»).
Théorie des graphesvignette|Un tracé de graphe. La théorie des graphes est la discipline mathématique et informatique qui étudie les graphes, lesquels sont des modèles abstraits de dessins de réseaux reliant des objets. Ces modèles sont constitués par la donnée de sommets (aussi appelés nœuds ou points, en référence aux polyèdres), et d'arêtes (aussi appelées liens ou lignes) entre ces sommets ; ces arêtes sont parfois non symétriques (les graphes sont alors dits orientés) et sont alors appelées des flèches ou des arcs.
CommunicationLa communication est l'ensemble des interactions avec un tiers humain ou animal qui véhiculent une ou plusieurs informations. En dehors de la communication animale, on distingue chez l'être humain, la communication interpersonnelle, la communication de groupe et la communication de masse, c'est-à-dire de l'ensemble des moyens et techniques permettant la diffusion du message d'une organisation sociale auprès d'une large audience. Plusieurs disciplines emploient la notion de communication sans s'accorder sur une définition commune.
Théorème de Kőnig (théorie des graphes)vignette|Exemple d'un graphe biparti avec un couplage maximum (en bleu) et une couverture de sommets minimale (en rouge), tous les deux de taille 6. Le théorème de Kőnig est un résultat de théorie des graphes qui dit que, dans un graphe biparti, la taille du transversal minimum (i. e. de la couverture par sommets minimum) est égale à la taille du couplage maximum. La version pondérée du théorème est appelée théorème de Kőnig-. Un couplage d'un graphe G est un sous-ensemble d'arêtes de G deux-à-deux non adjacentes ; un sommet est couplé s'il est extrémité d'une arête du couplage.
Line graphEn théorie des graphes, le line graph L(G) d'un graphe non orienté G, est un graphe qui représente la relation d'adjacence entre les arêtes de G. Le nom line graph vient d'un article de Harary et Norman publié en 1960. La même construction avait cependant déjà été utilisée par Whitney en 1932 et Krausz en 1943. Il est également appelé graphe adjoint. Un des premiers et des plus importants théorèmes sur les line graphs est énoncé par Hassler Whitney en 1932, qui prouve qu'en dehors d'un unique cas exceptionnel, la structure de G peut être entièrement retrouvée à partir de L(G) dans le cas des graphes connexes.
Diviser pour régner (informatique)thumb|652x652px|Trois étapes (diviser, régner, combiner) illustrées avec l'algorithme du tri fusion En informatique, diviser pour régner (du latin , divide and conquer en anglais) est une technique algorithmique consistant à : Diviser : découper un problème initial en sous-problèmes ; Régner : résoudre les sous-problèmes (récursivement ou directement s'ils sont assez petits) ; Combiner : calculer une solution au problème initial à partir des solutions des sous-problèmes.
Algorithme gloutonUn algorithme glouton (greedy algorithm en anglais, parfois appelé aussi algorithme gourmand, ou goulu) est un algorithme qui suit le principe de réaliser, étape par étape, un choix optimum local, afin d'obtenir un résultat optimum global. Par exemple, dans le problème du rendu de monnaie (donner une somme avec le moins possible de pièces), l'algorithme consistant à répéter le choix de la pièce de plus grande valeur qui ne dépasse pas la somme restante est un algorithme glouton.
Graphe planaireDans la théorie des graphes, un graphe planaire est un graphe qui a la particularité de pouvoir se représenter sur un plan sans qu'aucune arête (ou arc pour un graphe orienté) n'en croise une autre. Autrement dit, ces graphes sont précisément ceux que l'on peut plonger dans le plan, ou encore les graphes dont le nombre de croisements est nul. Les méthodes associées à ces graphes permettent de résoudre des problèmes comme l'énigme des trois maisons et d'autres plus difficiles comme le théorème des quatre couleurs.
Droits de la communicationLes droits de la communication englobent la liberté d'opinion et d'expression, la gouvernance démocratique des médias, la concentration des médias et le contrôle des médias, la participation à sa propre culture, le droit de choisir sa langue, les droits à l'éducation, la confidentialité, la liberté de réunion et le droit des peuples à disposer d'eux-mêmes. Ils concernent aussi l'inclusion et l'exclusion sociales, la qualité des moyens de communication et leur accessibilité.