The objective of this thesis was to increase our understanding of gravity-driven geophysical flows by developing a new platform to simulate avalanches of fluid in the laboratory. To simulate flow avalanches in the laboratory, we created a unique experimental setup consisting of a metallic frame supporting a reservoir, an inclined aluminum plane, and a horizontal run-out zone. At 6-m long, 1.8-m wide, and 3.5-m high, the structure is probably the largest laboratory setup of its kind in the world. In a dam-break experiment, up to 120 liters of fluid can be released from the reservoir down the 4-m long inclined plane. We precisely control initial and boundary conditions. To measure the free-surface profile, a novel imaging system consisting of a high-speed digital camera coupled to a synchronized micro-mirror projector was developed. The camera records how regular patterns projected onto the surface are deformed when the free surface moves. We developed algorithms to post-process the image data, determine the spreading rate, and generate whole-field 3-dimensional shape measurements of the free-surface profile. We compute the phase of the projected pattern, unwrap the phase, and then apply a calibration matrix to extract the flow thickness from the unwrapped phase. 56 different flow configurations, with a wide range of inclinations, were finally tested with Newtonian and viscoplastic fluids. For each test, the evolution of the free surface was recorded in 3 dimensions. Different flow regimes were observed, which depend on: the plane inclination, the setup geometry, the volume, and characteristics of the fluid. Partial agreements were found between theoretical models and our results.
Annalisa Buffa, Pablo Antolin Sanchez, Giuliano Guarino
Annalisa Buffa, Simone Deparis, Pablo Antolin Sanchez, Felipe Figueredo Rocha