Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Turbulence driven by small-scale instabilities results in strong heat and particle transport, which significantly shortens the confinement time and prevents the formation of a self-sustained plasma reaction in magnetic confinement devices. Control and poss ...
Tokamak devices aim to magnetically confine a hydrogen plasma at sufficiently high pressure to achieve net energy production from nuclear fusion of light isotopes. Predictive modeling and optimization is crucial for reliable operation of tokamak reactors, ...
Thermonuclear controlled fusion is a promising answer to the current energy and climate issues, providing a safe carbon-free source of energy which is virtually inexhaustible. In magnetic confinement thermonuclear fusion based on tokamak reactors, hydrogen ...
This paper summarizes the physical principles behind the novel three-ion scenarios using radio frequency waves in the ion cyclotron range of frequencies (ICRF). We discuss how to transform mode conversion electron heating into a new flexible ICRF technique ...
This work presents a fast and robust method for optimizing the stationary radial distribution of temperature, density and parallel current density in a tokamak plasma and its application to first-principle-based modeling of the ITER hybrid scenario. A new ...
A novel multiphysics methodology for the computation of realistic plasma neutron sources has been developed. The method is based on state-of-the-art plasma transport and neutron spectrum calculations, coupled with a Monte Carlo neutron transport code, brid ...
The magnetic confinement fusion devices known as the tokamak and the stellarator are
progressing towards becoming viable commercial nuclear fusion reactor designs. Both ap-
proaches require improvements in the applied heating sources and in the particle an ...
In many tokamak and stellarator experiments around the globe that arc investigating energy production via controlled thermonuclear fusion, electron cyclotron heating and current drive (ECH&CD) are used for plasma start-up, heating, non-inductive current dr ...
Tokamaks and stellarators are the most promising reactor concepts using the magnetic confinement to contain the plasma fuel. Reactors capable of sustaining deuterium-tritium (D-T) fusion reactions requires the confinement of a very high temperature plasma ...
EPFL2017
Wall conditioning is essential in tokamak and stellarator research to achieve plasma performance and reproducibility. This paper presents an overview of recent conditioning results, both from experiments in present devices and modelling, in view of devices ...