An alternative ECRH front steering launcher for the ITER upper port
Publications associées (33)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In present day tokamaks, the role of the control research is to support the physics experiments and to prepare technologies for future devices such as ITER and DEMO. This paper presents the developments done under the MST1 program collaboration on ASDEX Up ...
Tokamak devices aim to magnetically confine a hydrogen plasma at sufficiently high pressure to achieve net energy production from nuclear fusion of light isotopes. Predictive modeling and optimization is crucial for reliable operation of tokamak reactors, ...
The pre-conceptual layout for an electron cyclotron system (ECS) in DEMO is described. The present DEMO ECS considers only equatorial ports for both plasma heating and neoclassical tearing mode (NTM) control. This differs from ITER, where four launchers in ...
Neoclassical tearing modes (NTM) must be controlled or suppressed to prevent a degradation of the energy confinement in tokamak plasmas. This can be done applying RF-current via electron cyclotron current drive and -heating at the rational surface where th ...
2019
, ,
Each of the four ITER Electron Cyclotron Heating Upper Launcher (ECHUL) features eight transmission lines (TLs) that are used to inject 170-GHz microwave power into the plasma at a level of up to 1.31 MW (at the TL diamond window) per line. The millimeter ...
The four ITER Electron Cyclotron Upper Launchers (UL) are designed to control Magneto-Hydrodynamic instabilities with the deposition of Electron Cyclotron power. According to the present design, each launcher comprises two rows of four input waveguides, wh ...
EDP Sciences2015
, , , , ,
The design of the ITER ECRH system provides 20 MW millimeter wave power for central plasma heating and MHD stabilization. The system consists of an array of 24 gyrotrons with power supplies coupled to a set of transmission lines guiding the beams to the fo ...
Four EC H&CD (Electron Cyclotron Heating and Current Drive) launchers will be installed into the upper ports #12, #13, #15 and #16 in ITER. Beside plasma heating their main purpose is to counteract plasma instabilities by injecting up to 20 MW of microwave ...
Nuclear fusion power plants require electron cyclotron (EC) heating and current drive (H&CD) systems for plasma heating and stabilization. High-power microwave beams between 1 and 2?MW generated by gyrotrons propagate in a dedicated waveguide transmission ...
The effects of friction are critical to the dynamics of electric power steering (EPS). On the one hand, friction contributes to the stability of the system and filters some of the disturbances (road vibration, etc.). On the other hand, it affects negativel ...