The spatially resolved identification of active sites on the heterogeneous catalyst surface is an essential step toward directly visualizing a catalytic reaction with atomic scale. To date, ferrous centers on platinum group metals have shown promising pote ...
Over the past decade, quantum photonics platforms aiming at harnessing the fundamental properties of single particles, such as quantum superposition and quantum entanglement, have flourished. In this context, single-photon emitters capable of operating at ...
Protein ubiquitin in its +7 charge state microhydrated by 5 and 10 water molecules has been interrogated in the gas phase by cold ion UV/IR spectroscopy. The complexes were formed either by condensing water onto the unfolded bare proteins in a temperature- ...
Pt(II)-based molecular catalysts stand as a prototypical system in hydrogen evolution reactions (HER) owing to their consistently elevated activity levels. Their integration into heterogeneous systems thus provides an ideal platform to develop catalytic ma ...
The exploration of electronically excited states and the study of diverse photochemical and photophysical processes are the main goals of molecular electronic spectroscopy. Exact quantum-mechanical simulation of such experiments is, however, beyond current ...
In this thesis, we give new protocols that offer a quantum advantage for problems in ML, Physics, and Finance.
Quantum mechanics gives predictions that are inconsistent with local realism.
The experiment proving this fact (Bell, 1964) gives a quantum proto ...
Randomized measurement protocols such as classical shadows represent powerful resources for quantum technologies, with applications ranging from quantum state characterization and process tomography to machine learning and error mitigation. Recently, the n ...
Quantum computing not only holds the potential to solve long-standing problems in quantum physics, but also to offer speed-ups across a broad spectrum of other fields. Access to a computational space that incorporates quantum effects, such as superposition ...
Quantum optics studies how photons interact with other forms of matter, the understanding of which was crucial for the development of quantum mechanics as a whole. Starting from the photoelectric effect, the quantum property of light has led to the develop ...
Advancing quantum technologies depends on the precise control of individual quantum systems, the so-called qubits, and the exploitation of their quantum properties. Nowadays, expanding the number of qubits to be entangled is at the core of the developments ...