LSH At Large - Distributed KNN Search in High Dimensions
Publications associées (36)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
When examining complex problems, such as the folding of proteins, coarse grained descriptions of the system drive our investigation and help us to rationalize the results. Oftentimes collective variables (CVs), derived through some chemical intuition about ...
Extracting low dimensional structure from high dimensional data arises in many applications such as machine learning, statistical pattern recognition, wireless sensor networks, and data compression. If the data is restricted to a lower dimensional subspace ...
Institute of Electrical and Electronics Engineers2012
In this paper, we propose a novel algorithm for dimensionality reduction that uses as a criterion the mutual information (MI) between the transformed data and their cor- responding class labels. The MI is a powerful criterion that can be used as a proxy to ...
Institute of Electrical and Electronics Engineers2015
Locality-Sensitive Hashing (LSH) approximates nearest neighbors in high dimensions by projecting original data into low-dimensional subspaces. The basic idea is to hash data samples to ensure that the probability of collision is much higher for samples tha ...
In this paper we consider distributed K-Nearest Neighbor (KNN) search and range query processing in high dimensional data. Our approach is based on Locality Sensitive Hashing (LSH) which has proven very efficient in answering KNN queries in centralized set ...
The Small-World phenomenon, well known under the phrase "six degrees of separation", has been for a long time under the spotlight of investigation. The fact that our social network is closely-knitted and that any two people are linked by a short chain of a ...
Ranking queries, which return only a subset of results matching a user query, have been studied extensively in the past decade due to their importance in a wide range of applications. In this thesis, we study ranking queries in novel environments and setti ...
The peer-to-peer (P2P) paradigm has become very popular for storing and sharing information in a totally decentralized manner. At first, research focused on P2P systems that host 1D data. Nowadays, the need for P2P applications with multidimensional data h ...
Institute of Electrical and Electronics Engineers2009
Peer-to-peer (P2P) architectures are popular for tasks such as collaborative download, VoIP telephony, and backup. To maximize performance in the face of widely variable storage capacities and bandwidths, such systems typically need to shift work from poor ...
The impact of Peer-to-Peer (P2P) networks on the Internet landscape is undisputed. It has led to a series of new applications, e.g., as part of the so-called Web 2.0. The shift from the classical client-server based paradigm of the Internet, with a clear d ...