Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The vision of nomadic computing with its ubiquitous access has stimulated much interest in the Mobile Ad Hoc Networking (MANET) technology. However, its proliferation strongly depends on the availability of security provisions, among other factors. In the open, collaborative MANET environment practically any node can maliciously or selfishly disrupt and deny communication of other nodes. In this paper, we present and evaluate the Secure Message Transmission (SMT) protocol, which safeguards the data transmission against arbitrary malicious behavior of other nodes. SMT is a lightweight, yet very effective, protocol that can operate solely in an end-to- end manner. It exploits the redundancy of multi-path routing and adapts its operation to remain efficient and effective even in highly adverse environments. SMT is capable of delivering up to 250% more data messages than a protocol that does not secure the data transmission. Moreover, SMT outperforms an alternative single-path protocol, a secure data forwarding protocol we term Secure Single Path (SSP) protocol. SMT imposes up to 68% less routing overhead than SSP, delivers up to 22% more data packets and achieves end-to-end delays that are up to 94% lower than those of SSP. Thus, SMT is better suited to support QoS for real-time communications in the ad hoc networking environment. The security of data transmission is achieved without restrictive assumptions on the network nodes’ trust and network membership, without the use of intrusion detection schemes, and at the expense of moderate multi-path transmission overhead only.
Bryan Alexander Ford, Antoine Rault, Amogh Pradeep, Hira Javaid
, ,