3D Face Recognition using Sparse Spherical Representations
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
With growing concern about process variation in deeply nano-scaled technologies, parameterized device and circuit modeling is becoming very important for design and verification. However, the high dimensionality of parameter space is a serious modeling cha ...
In this work a new method for automatic image classification is proposed. It relies on a compact representation of images using sets of sparse binary features. This work first evaluates the Fast Retina Keypoint binary descriptor and proposes imp ...
In this paper, a method for semi-supervised multiview feature extraction based on the multiset regularized kernel canonical correlation analysis (kCCA) is proposed for the classification of hyperspectral images. The covariance matrix of this type of data i ...
Principal Component Analysis (PCA) has been widely used for manifold description and dimensionality reduction. Performance of PCA is however hampered when data exhibits nonlinear feature relations. In this work, we propose a new framework for manifold lear ...
Conventional linear subspace learning methods like principal component analysis (PCA), linear discriminant analysis (LDA) derive subspaces from the whole data set. These approaches have limitations in the sense that they are linear while the data distribut ...
Institute of Electrical and Electronics Engineers2011
Nonlocal means (NLM) is an effective denoising method that applies adaptive averaging based on similarity between neighborhoods in the image. An attractive way to both improve and speed-up NLM is by first performing a linear projection of the neighborhood. ...
In this paper, we propose a novel algorithm for dimensionality reduction that uses as a criterion the mutual information (MI) between the transformed data and their cor- responding class labels. The MI is a powerful criterion that can be used as a proxy to ...
Institute of Electrical and Electronics Engineers2015
When examining complex problems, such as the folding of proteins, coarse grained descriptions of the system drive our investigation and help us to rationalize the results. Oftentimes collective variables (CVs), derived through some chemical intuition about ...
We consider the problem of classification of a pattern from multiple compressed observations that are collected in a sensor network. In particular, we exploit the properties of random projections in generic sensor devices and we take some first steps in in ...
Locality-Sensitive Hashing (LSH) approximates nearest neighbors in high dimensions by projecting original data into low-dimensional subspaces. The basic idea is to hash data samples to ensure that the probability of collision is much higher for samples tha ...