Publication

SWISSCASE

Michael Bodendorfer
2008
Thèse EPFL
Résumé

This PhD thesis consists of planning, simulating, building, testing and characterizing a new electron cyclotron resonance (ECR) ion source, SWISSCASE. the Solar Wind Ion Source Simulator for the CAlibration of Space Experiments located at the University of Bern, Switzerland. The ion source will be operated in the existing CASYMS ultra high vacuum (UHV) facility and will extend the application field of the existing filament electron collision ion source inside CASYMS and the existing electron cyclotron resonance ion source MEFISTO, operated in its own UHV facility. The chosen ECR ionization concept operating at 10.88 GHz delivers high currents of highly charged ions of up to 2 µA for Ar8+ and a maximum identified charge state of Ar12+. In addition to argon, the ECR plasma of SWISSCASE has been operated with krypton, xenon and carbon dioxide gas, revealing all of the expected charge states and featuring a charge states distribution in favor of highly charged ions. Design constraints were given by the final application of SWISSCASE being implemented in CASYMS with limited space and power. The new ion source was realized with limited funding. Numerical simulations gave insight in unprecedented quality and detail about the complex three dimensional extent of the magnetic field distribution of the full permanent magnet confinement of both, SWISSCASE and MEFISTO, the second ECR ion source, operated since 1997 at the University of Bern. For both confinement systems, the isocontour surface, defined by the electron cyclotron resonance condition of the incident microwave, is visualized in 3D. In addition to the realization of the ECR ion source, a plasma Bremsstrahlung measurement revealed an average ECR electron temperature of 10 keV for an argon plasma. This temperature was used to perform numerical simulations of electron trajectories inside the SWISSCASE and the MEFISTO confinement. The simulated magnetic field distribution of MEFISTO and the simulated electron distribution of SWISSCASE are closely related to the observed triangle shaped surface coating patterns found in hexapole confined ECR ion sources.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (33)
Résonance cyclotron
La résonance cyclotron électronique (ECR pour electron cyclotron resonance) est un phénomène observé aussi bien en physique des plasmas qu'en physique de la matière condensée. Un électron dans un champ magnétique statique et uniforme se déplace sur un cercle en raison de la force de Lorentz. Le mouvement circulaire peut être superposé à un mouvement uniforme axial, résultant en une hélice, ou avec un mouvement uniforme perpendiculaire au champ, par exemple, en présence d'un champ électrique ou gravitationnel, résultant en une cycloïde.
Ion source
An ion source is a device that creates atomic and molecular ions. Ion sources are used to form ions for mass spectrometers, optical emission spectrometers, particle accelerators, ion implanters and ion engines. Electron ionization Electron ionization is widely used in mass spectrometry, particularly for organic molecules. The gas phase reaction producing electron ionization is M{} + e^- -> M^{+\bullet}{} + 2e^- where M is the atom or molecule being ionized, e^- is the electron, and M^{+\bullet} is the resulting ion.
Confinement inertiel électrostatique
Le confinement inertiel électrostatique (en anglais Inertial electrostatic confinement ou IEC), ou plus simplement confinement électrostatique, est un procédé permettant, grâce à un champ électrostatique, de maintenir un plasma dans un volume suffisamment restreint, et à une température suffisamment élevée, de telle sorte que des réactions de fusion nucléaire puissent s'y produire. Le dispositif IEC le plus ancien et le plus connu est le fuseur de Farnsworth-Hirsch.
Afficher plus
Publications associées (32)

An experimental and computational study of tokamak plasma turbulence

Aylwin Iantchenko

Turbulence driven by small-scale instabilities results in strong heat and particle transport, which significantly shortens the confinement time and prevents the formation of a self-sustained plasma reaction in magnetic confinement devices. Control and poss ...
EPFL2023

Modelling of nonneutral plasmas trapped by electric and magnetic fields relevant to gyrotron electron guns

Guillaume Michel Le Bars

Gyrotrons are a class of high-power vacuum-electronics microwave sources, which are envisioned to play an important role in the domain of magnetically confined fusion plasmas. Indeed, only gyrotrons are capable of producing continuous electromagnetic waves ...
EPFL2023

Optimization of X-mode electron cyclotron current drive in high-electron-temperature plasma in the EAST tokamak

Joan Decker, Chunmin Zhang, Fang Liu

A discharge with electron temperature up to 14 keV has been achieved in EAST. Analysis of the electron cyclotron current drive (ECCD) efficiency at high electron temperature under EAST parameters is presented using C3PO/LUKE code. Simulation results show t ...
IOP Publishing Ltd2023
Afficher plus
MOOCs associés (12)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.