Publication

Enhancing posterior based speech recognition systems

Hamed Ketabdar
2008
Thèse EPFL
Résumé

The use of local phoneme posterior probabilities has been increasingly explored for improving speech recognition systems. Hybrid hidden Markov model / artificial neural network (HMM/ANN) and Tandem are the most successful examples of such systems. In this thesis, we present a principled framework for enhancing the estimation of local posteriors, by integrating phonetic and lexical knowledge, as well as long contextual information. This framework allows for hierarchical estimation, integration and use of local posteriors from the phoneme up to the word level. We propose two approaches for enhancing the posteriors. In the first approach, phoneme posteriors estimated with an ANN (particularly multi-layer Perceptron – MLP) are used as emission probabilities in HMM forward-backward recursions. This yields new enhanced posterior estimates integrating HMM topological constraints (encoding specific phonetic and lexical knowledge), and long context. In the second approach, a temporal context of the regular MLP posteriors is post-processed by a secondary MLP, in order to learn inter and intra dependencies among the phoneme posteriors. The learned knowledge is integrated in the posterior estimation during the inference (forward pass) of the second MLP, resulting in enhanced posteriors. The use of resulting local enhanced posteriors is investigated in a wide range of posterior based speech recognition systems (e.g. Tandem and hybrid HMM/ANN), as a replacement or in combination with the regular MLP posteriors. The enhanced posteriors consistently outperform the regular posteriors in different applications over small and large vocabulary databases.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.