Experimental study of limit cycle and chaotic controllers for the locomotion of centipede robots
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Quadratic Programming (QP)-based controllers allow many robotic systems, such as humanoids, to successfully undertake complex motions and interactions. However, these approaches rely heavily on adequately capturing the underlying model of the environment a ...
Robots are employed to assist humans in lengthy, challenging, and repetitive tasks. However, the fields of rehabilitation, haptics, and assistive robotics have shown a significant need to support and interact with people in their everyday life. To facilita ...
The task of robotic mobile manipulation poses several scientific challenges that need to be addressed to execute complex manipulation tasks in unstructured environments, in which collaboration with humans might be required. Therefore, we present ALMA, a mo ...
Undulatory swimming represents an ideal behavior to investigate locomotion control and the role of the underlying central and peripheral components in the spinal cord. Many vertebrate swimmers have central pattern generators and local pressure-sensitive re ...
Underwater swimming robots permit remote access to over 70% of the Earth's surface that is covered in water for a variety of scientific, environmental, tactical, or industrial purposes. Many practical applications for robots in this setting include sensing ...
Modular robots (MRs) consist of similar modules that can be configured into different shapes. MRs introduce a number of benefits over conventional robots specifically designed for a task. Self-reconfigurable modular robots (SRMRs) are a sub-category of MRs ...
In ant colonies, collectivity enables division of labour and resources with great scalability. Beyond their intricate social behaviours, individuals of the genus Odontomachus, also known as trap-jaw ants, have developed remarkable multi-locomotion mechanis ...
Despite enhancements in the development of robotic systems, the energy economy of today's robots lags far behind that of biological systems. This is in particular critical for untethered legged robot locomotion. To elucidate the current stage of energy eff ...
Agile quadrupedal locomotion in animals and robots is yet to be fully understood, quantified
or achieved. An intuitive notion of agility exists, but neither a concise definition nor a common
benchmark can be found. Further, it is unclear, what minimal leve ...
This letter presents closed-loop position control of a pneumatically actuated modular robotic platform "pneumagami" that can be stacked to enlarge work and design space for wearable applications. The module is a 3 degrees of freedom (DoF) parallel robot wi ...