Distributed Sampling of Signals Linked by Sparse Filtering: Theory and Applications
Publications associées (259)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Domain generalization (DG) aims to learn a model from multiple training (i.e., source) domains that can generalize well to the unseen test (i.e., target) data coming from a different distribution. Single domain generalization (SingleDG) has recently emerge ...
In this paper, we study sampling from a posterior derived from a neural network. We propose a new probabilistic model consisting of adding noise at every pre- and post-activation in the network, arguing that the resulting posterior can be sampled using an ...
Bioaerosols are emitted from various sources into the indoor environment and can positively and negatively impact human health. Humans are the major source of bioaerosol emissions indoors, specifically for bacteria. However, efficient sampling to guarantee ...
Surrogate-based optimization is widely used for aerodynamic shape optimization, and its effectiveness depends on representative sampling of the design space. However, traditional sampling methods are hard-pressed to effectively sample high-dimensional desi ...
DNA methylation (DNAm) is one of the most frequently studied epigenetic mechanisms facilitating the interplay of genomic and environmental factors, which can contribute to externalizing behaviours and related psychiatric disorders. Previous epigenome-wide ...
PERGAMON-ELSEVIER SCIENCE LTD2023
, , , , ,
We present Epidemic Learning ( EL ), a simple yet powerful decentralized learning (DL) algorithm that leverages changing communication topologies to achieve faster model convergence compared to conventional DL approaches. At each round of EL, each node sen ...
2023
, , ,
We present Diffusion in Style, a simple method to adapt Stable Diffusion to any desired style, using only a small set of target images. It is based on the key observation that the style of the images generated by Stable Diffusion is tied to the initial lat ...
2023
Estimation of causal effects using machine learning methods has become an active research field in econometrics. In this paper, we study the finite sample performance of meta-learners for estimation of heterogeneous treatment effects under the usage of sam ...
2022
,
As the data volume grows, reducing the query execution times remains an elusive goal. While approximate query processing (AQP) techniques present a principled method to trade off accuracy for faster queries in analytics, the sample creation is often consid ...
Data-driven and model-driven methodologies can be regarded as competitive fields since they tackle similar problems such as prediction. However, these two fields can learn from each other to improve themselves. Indeed, data-driven methodologies have been d ...